A153723 Greatest number m such that the fractional part of (Pi-2)^A153719(m) >= 1-(1/m).
1, 1, 1, 3, 16, 24, 45, 158, 410, 946, 1182, 8786, 16159, 20188, 61392, 78800, 78959, 217556
Offset: 1
Examples
a(5) = 16, since 1-(1/17) = 0.941176... > fract((Pi-2)^A153719(5)) = fract((Pi-2)^5) = 0.9389... >= 0.9375 = 1-(1/16).
Programs
-
Mathematica
$MaxExtraPrecision = 100000; A153719 = {1, 2, 3, 4, 5, 39, 56, 85, 557, 911, 2919, 2921, 4491, 11543, 15724, 98040, 110932, 126659}; Floor[1/(1 - FractionalPart[(Pi - 2)^A153719])] (* Robert Price, Apr 18 2019 *)
Formula
a(n) = floor(1/(1-fract((Pi-2)^A153719(n)))), where fract(x) = x-floor(x).