A153846 Number of non-isomorphic I-graphs I(n,j,k) on 2n vertices (1<=j,k<=Floor[(n-1)/2]).
1, 1, 2, 3, 2, 4, 4, 6, 3, 11, 4, 7, 10, 10, 5, 14, 5, 17, 12, 11, 6, 28, 10, 14, 13, 21, 8, 35, 8, 22, 17, 18, 17, 41, 10, 19, 20, 40, 11, 44, 11, 31, 32, 23, 12, 60, 16, 36, 25, 37, 14, 49, 24, 50, 27, 30, 15, 93, 16, 31, 40, 46, 29, 64, 17, 47, 32, 63, 18, 96, 19, 38, 49, 51, 30
Offset: 3
Keywords
References
- I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.
Links
- Marko Boben, Tomaz Pisanski, Arjana Zitnik, I-graphs and the corresponding configurations J. Combin. Des. 13 (2005), no. 6, 406--424.
- B. Horvat, T. Pisanski; A. Zitnik. Isomorphism checking of I-graphs, Graphs Comb. 28, No. 6, 823-830 (2012).
- M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164.
- Eric Weisstein's World of Mathematics, Graph Expansion
Comments