This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153851 #8 Sep 20 2020 19:12:48 %S A153851 1,1,6,57,683,9474,145815,2430393,43202448,810629805,15938815794, %T A153851 326653743510,6949638584208,153009877730525,3477623225388063, %U A153851 81429702521625843,1961136442605508341,48513571089988199157 %N A153851 Nonzero coefficients of the g.f. that satisfies: A(x) = x + A(A(x))^3. %H A153851 Paul D. Hanna, <a href="/A153851/b153851.txt">Table of n, a(n) for n = 1..200</a> %F A153851 G.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1) satisfies: %F A153851 (1) A(x) = Series_Reversion( x - A(x)^3 ). %F A153851 (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n) / n!. - _Paul D. Hanna_, Sep 07 2020 %F A153851 (3) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n)/x / n! ). - _Paul D. Hanna_, Sep 07 2020 %F A153851 (4) x = A(A( x-x^3 - A(x)^3 )). - _Paul D. Hanna_, Sep 07 2020 %e A153851 G.f.: A(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 +... %e A153851 A(x - A(x)^3) = x where %e A153851 A(x)^3 = x^3 + 3*x^5 + 21*x^7 + 208*x^9 + 2517*x^11 + 34851*x^13 +... %e A153851 SYSTEM OF RELATED FUNCTIONS. %e A153851 A = A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations: %e A153851 A = 1 + x^2*B^3; %e A153851 B = A + x^2*C^3; %e A153851 C = B + x^2*D^3; %e A153851 D = C + x^2*E^3; %e A153851 E = D + x^2*F^3; ... %e A153851 where the functions xB, xC, xD, etc., are successive iterations of A(x): %e A153851 x*A = A(x), %e A153851 x*B = A(A(x)) = g.f. of A153852, %e A153851 x*C = A(A(A(x))) = g.f. of A153853, %e A153851 x*D = A(A(A(A(x)))) = g.f. of A153854, etc. %e A153851 The nonzero coefficients of these functions begin: %e A153851 A:[1, 1, 6, 57, 683, 9474, 145815, 2430393, 43202448,...]; %e A153851 B:[1, 2, 15, 165, 2213, 33693, 561867, 10053141, 190489374,...]; %e A153851 C:[1, 3, 27, 339, 5067, 84738, 1536867, 29687772, 603835479,...]; %e A153851 D:[1, 4, 42, 594, 9827, 179928, 3545637, 73988631, 1618178067,...]; %e A153851 E:[1, 5, 60, 945, 17180, 342765, 7316178, 164606166, 3866962617,...]; %e A153851 F:[1, 6, 81, 1407, 27918, 603879, 13907133, 336334443, 8466942393,...]; %e A153851 G:[1, 7, 105, 1995, 42938, 1001973, 24795645, 642380025, 17278647147,...]; %e A153851 H:[1, 8, 132, 2724, 63242, 1584768, 41975610, 1160887350, 33260962995,..]; ... %e A153851 The main diagonal in the above table is A153850. %o A153851 (PARI) {a(n)=local(A=x+x^2); for(i=0, n, A=serreverse(x-subst(A^3, x, x+x^2*O(x^(2*n))))) ; polcoeff(A, 2*n-1)} %Y A153851 Cf. A153852, A153853, A153854, A153850; variants: A139702, A213591. %K A153851 nonn %O A153851 1,3 %A A153851 _Paul D. Hanna_, Jan 21 2009