This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A153854 #6 Oct 05 2024 16:30:04 %S A153854 1,4,42,594,9827,179928,3545637,73988631,1618178067,36832568283, %T A153854 868184365137,21113629246953,528282055072773,13569770211307323, %U A153854 357215846155083585,9623529095387448543,265025641890780905892 %N A153854 Nonzero coefficients of g.f.: A(x) = G(G(G(G(x)))) where G(x) = x + G(G(x))^3 is the g.f. of A153851. %F A153854 G.f.: A(x) = Sum_{n>=0} a(2n+1)*x^(2n+1) = G(G(G(G(x)))) where G(x) is the g.f. of A153851. %F A153854 G.f.: A(x) = F(F(x)) where F(x) is the g.f. of A153852. %e A153854 G.f.: A(x) = x + 4*x^3 + 42*x^5 + 594*x^7 + 9827*x^9 +... %e A153854 A(x)^3 = x^3 + 12*x^5 + 174*x^7 + 2854*x^9 + 51045*x^11 +... %e A153854 A(x) = G(G(G(G(x)))) where %e A153854 G(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 +... %e A153854 A(x) = F(F(x)) where F(x) = G(G(x)) is the g.f. of A153852: %e A153854 F(x) = x + 2*x^3 + 15*x^5 + 165*x^7 + 2213*x^9 + 33693*x^11 +... %o A153854 (PARI) {a(n)=local(G=x+O(x^(2*n+1))); for(i=0, n, G=serreverse(x-G^3)); polcoeff(subst(subst(G,x,G),x,subst(G,x,G)), 2*n-1)} %Y A153854 Cf. A153851, A153852, A153853, A153850. %K A153854 nonn %O A153854 1,2 %A A153854 _Paul D. Hanna_, Jan 21 2009