A153979 Prime sums of prime factors of composite(k)=A002808(k).
5, 7, 7, 13, 11, 19, 11, 11, 11, 17, 11, 13, 31, 13, 13, 23, 13, 43, 17, 13, 13, 17, 19, 13, 19, 61, 23, 73, 17, 41, 23, 19, 47, 17, 19, 29, 19, 103, 29, 17, 109, 17, 19, 37, 17, 17, 71, 23, 139, 37, 19, 43, 151, 17, 83, 17, 23, 47, 43, 31, 19, 181, 17, 31, 47, 53, 193, 17, 23, 101, 23, 199, 29, 17
Offset: 1
Keywords
Examples
A002808(1)=4=2*2, and 2+2=4(nonprime), so 4 does not contribute to this sequence. A002808(2)=6=2*3 and 2+3=5(prime), so a(1)=5. A002808(5)=10=2*5 and 2+5=7(prime), so a(2)=7. A002808(6)=12=2*2*3 and 2+2+3=7(prime), so a(3)=7.
Links
- Karl Hovekamp, Table of n, a(n) for n=1,...,12285.
- Karl Hovekamp, Table of n, a(n), source, factors for n=1,...,12285.
Programs
-
Maple
N:= 1000: # to get a(1) to a(N) count:= 0: for x from 2 while count < N do if not isprime(x) then y:= add(f[1]*f[2],f=ifactors(x)[2]); if isprime(y) then count:= count+1; A[count]:= y; fi fi od; seq(A[i],i=1..N); # Robert Israel, Apr 26 2015
-
Mathematica
lim = 410; s = Select[Range@ lim, CompositeQ]; f[n_] := Plus @@ (Flatten[Table[#1, {#2}] & @@@ FactorInteger@ n]); Select[f /@ s, PrimeQ] (* Michael De Vlieger, Apr 26 2015 *)
-
PARI
forcomposite(c=1,999,isprime(s=(s=factor(c))[,1]~*s[,2])&&print1(s",")) \\ M. F. Hasler, May 02 2015
Extensions
Corrected and edited by Karl Hovekamp, Dec 05 2009
Comments