cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154107 A000110 / A014182: (A154107 convolved with A014182 = Bell numbers).

Original entry on oeis.org

1, 1, 3, 5, 15, 61, 207, 881, 4491, 21493, 117543, 710021, 4266279, 28107745, 196120515, 1397747525, 10648637151, 84304440685, 688868927151, 5913133211249, 52348170504555, 479326416322933, 4557380168574135, 44560107679838549, 449806788855058407, 4680686977970550721
Offset: 0

Views

Author

Gary W. Adamson, Jan 04 2009

Keywords

Comments

A000110 / A014182 = (the eigensequence of Pascal's triangle) /
(eigensequence of the inverse of Pascal's triangle).
A014182 = expansion of exp(1-x-exp(-x)).

Examples

			A000110 = 52 = (1, 1, 3, 5, 15, 61) convolved with (1, 0, -1, 1, 2, -9)
= (61 - 5 + 3 + 2 - 9)
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; Table[a[j]/.SolveAlways[Table[Sum[a[k]*Sum[(-1)^(n-k-m)*StirlingS2[n-k+1, m+1], {m, 0, n-k}], {k, 0, n}]==BellB[n], {n, 0, nmax}], a][[1]], {j, 0, nmax}] (* Vaclav Kotesovec, Jul 26 2021 *)

Formula

A000110 / A014182 = (1, 1, 2, 5, 15, 52, 203,...) / (1, 0, -1, 1, 2, -9, 9, 50,...).

Extensions

a(12) corrected and more terms added from Vaclav Kotesovec, Jul 26 2021