This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154152 #17 Dec 23 2024 14:53:42 %S A154152 4,10,37,67,220,394,1285,2299,7492,13402,43669,78115,254524,455290, %T A154152 1483477,2653627,8646340,15466474,50394565,90145219,293721052, %U A154152 525404842,1711931749,3062283835,9977869444,17848298170,58155284917,104027505187,338953840060 %N A154152 Indices k such that 26 plus the k-th triangular number is a perfect square. %H A154152 Colin Barker, <a href="/A154152/b154152.txt">Table of n, a(n) for n = 1..500</a> %H A154152 F. T. Adams-Watters, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2009-October/002504.html">SeqFan Discussion</a>, Oct 2009 %H A154152 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,6,-6,-1,1). %F A154152 {k: 26+k*(k+1)/2 in A000290}. %F A154152 a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5). %F A154152 G.f.: x*(-4-6*x-3*x^2+6*x^3+5*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)). %F A154152 G.f.: ( 10 + (-3-6*x)/(x^2+2*x-1) + 1/(x-1) + (12+27*x)/(x^2-2*x-1) )/2. %e A154152 4*(4+1)/2+26 = 6^2. 10*(10+1)/2+26 = 9^2. 37*(37+1)/2+26 = 27^2. 67*(67+1)/2+26 = 48^2. %t A154152 Join[{4, 10}, Select[Range[0,10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 26 &]] (* or *) LinearRecurrence[{1,6,-6,-1,1}, {4,10,37,67,220}, 25] (* _G. C. Greubel_, Sep 03 2016 *) %o A154152 (PARI) Vec(x*(-4-6*x-3*x^2+6*x^3+5*x^4)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^40)) \\ _Colin Barker_, Jul 11 2015 %Y A154152 Cf. A000217, A000290, A006451. %K A154152 nonn,less,easy %O A154152 1,1 %A A154152 _R. J. Mathar_, Oct 18 2009 %E A154152 Extended by _D. S. McNeil_, Dec 05 2010