This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154222 #23 Sep 08 2022 08:45:40 %S A154222 1,2,4,8,17,38,87,200,457,1034,2315,5132,11277,24590,53263,114704, %T A154222 245777,524306,1114131,2359316,4980757,10485782,22020119,46137368, %U A154222 96469017,201326618,419430427,872415260,1811939357,3758096414,7784628255,16106127392,33285996577 %N A154222 Row sums of number triangle A154221. %H A154222 G. C. Greubel, <a href="/A154222/b154222.txt">Table of n, a(n) for n = 0..1000</a> %H A154222 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4). %F A154222 a(n) = (1/4)*( 4*(n+1) + (n-1)*2^n + 0^n). %F A154222 From _Colin Barker_, Oct 11 2014: (Start) %F A154222 a(n) = A045618(n-4) + 2^n for n>3. %F A154222 a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n>4. %F A154222 a(n) = (4 - 2^n + (4+2^n)*n)/4 for n>0. %F A154222 G.f.: (x^4 - 2*x^3 + 5*x^2 - 4*x + 1) / ((x-1)^2*(2*x-1)^2). %F A154222 (End) %F A154222 E.g.f.: (1/4)*(1 + 4*(1 + x)*exp(x) + (2*x - 1)*exp(2*x)). - _G. C. Greubel_, Sep 06 2016 %t A154222 Join[{1},LinearRecurrence[{6, -13, 12, -4}, {2, 4, 8,17}, 25]] (* or *) Table[(1/4)*( 4*(n+1) + (n-1)*2^n + 0^n), {n,0,25}] (* _G. C. Greubel_, Sep 06 2016 *) %o A154222 (PARI) Vec((x^4-2*x^3+5*x^2-4*x+1)/((x-1)^2*(2*x-1)^2) + O(x^100)) \\ _Colin Barker_, Oct 11 2014 %o A154222 (Magma) [(1/4)*(4*(n+1)+(n-1)*2^n+0^n): n in [0..35]]; // _Vincenzo Librandi_, Sep 07 2016 %Y A154222 Cf. A045618, A154221. %K A154222 easy,nonn %O A154222 0,2 %A A154222 _Paul Barry_, Jan 05 2009 %E A154222 More terms and xrefs from _Colin Barker_, Oct 11 2014