This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154227 #5 Mar 02 2021 16:18:12 %S A154227 1,1,1,1,8,1,1,19,19,1,1,35,158,35,1,1,57,592,592,57,1,1,86,1629,5608, %T A154227 1629,86,1,1,123,3767,28549,28549,3767,123,1,1,169,7760,105621,309458, %U A154227 105621,7760,169,1,1,225,14694,320566,1985274,1985274,320566,14694,225,1 %N A154227 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)/2)*T(n-2, k-1), read by rows. %C A154227 Row sums are: {1, 2, 10, 40, 230, 1300, 9040, 64880, 536560, 4641520, ...}. %C A154227 The row sums of this class of sequences (see Cf section) is given by the following. Let S(n) be the row sum then S(n) = 2*S(n-1) + f(n)*S(n-2) for a given f(n). For this sequence f(n) = binomial(n+2, 2). - _G. C. Greubel_, Mar 02 2021 %H A154227 G. C. Greubel, <a href="/A154227/b154227.txt">Rows n = 0..50 of the triangle, flattened</a> %F A154227 T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)/2)*T(n-2, k-1) with T(n, 0) = T(n, n) = 1. %e A154227 Triangle begins as: %e A154227 1; %e A154227 1, 1; %e A154227 1, 8, 1; %e A154227 1, 19, 19, 1; %e A154227 1, 35, 158, 35, 1; %e A154227 1, 57, 592, 592, 57, 1; %e A154227 1, 86, 1629, 5608, 1629, 86, 1; %e A154227 1, 123, 3767, 28549, 28549, 3767, 123, 1; %e A154227 1, 169, 7760, 105621, 309458, 105621, 7760, 169, 1; %e A154227 1, 225, 14694, 320566, 1985274, 1985274, 320566, 14694, 225, 1; %p A154227 T:= proc(n, k) option remember; %p A154227 if k=0 or k=n then 1 %p A154227 else T(n-1, k) + T(n-1, k-1) + binomial(n+2,2)*T(n-2, k-1) %p A154227 fi; end: %p A154227 seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Mar 02 2021 %t A154227 T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + Binomial[n+2, 2]*T[n-2, k-1] ]; %t A154227 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Mar 02 2021 *) %o A154227 (Sage) %o A154227 def f(n): return binomial(n+2,2) %o A154227 def T(n,k): %o A154227 if (k==0 or k==n): return 1 %o A154227 else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1) %o A154227 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 02 2021 %o A154227 (Magma) %o A154227 f:= func< n | Binomial(n+2,2) >; %o A154227 function T(n,k) %o A154227 if k eq 0 or k eq n then return 1; %o A154227 else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1); %o A154227 end if; return T; %o A154227 end function; %o A154227 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 02 2021 %Y A154227 Cf. A154228, A154229, A154230, A154231, A154233. %K A154227 nonn,tabl %O A154227 0,5 %A A154227 _Roger L. Bagula_, Jan 05 2009 %E A154227 Edited by _G. C. Greubel_, Mar 02 2021