This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154229 #12 Mar 04 2021 02:36:21 %S A154229 1,1,1,1,38,1,1,139,139,1,1,365,8828,365,1,1,807,70492,70492,807,1,1, %T A154229 1592,357459,7062136,357459,1592,1,1,2889,1404923,98777227,98777227, %U A154229 1404923,2889,1,1,4915,4631612,824036625,14498379854,824036625,4631612,4915,1 %N A154229 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)/2)^2*T(n-2, k-1), read by rows. %C A154229 Row sums are: {1, 2, 40, 280, 9560, 142600, 7780240, 200370080, 16155726160, ...}. %C A154229 The row sums of this class of sequences (see cross-references) is given by the following. Let S(n) be the row sum then S(n) = 2*S(n-1) + f(n)*S(n-2) for a given f(n). For this sequence f(n) = binomial(n+2, 2)^2 = A000537(n+1). - _G. C. Greubel_, Mar 02 2021 %H A154229 G. C. Greubel, <a href="/A154229/b154229.txt">Rows n = 0..50 of the triangle, flattened</a> %F A154229 T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)/2)^2*T(n-2, k-1) with T(n, 0) = T(n, n) = 1. %e A154229 Triangle begins as: %e A154229 1; %e A154229 1, 1; %e A154229 1, 38, 1; %e A154229 1, 139, 139, 1; %e A154229 1, 365, 8828, 365, 1; %e A154229 1, 807, 70492, 70492, 807, 1; %e A154229 1, 1592, 357459, 7062136, 357459, 1592, 1; %e A154229 1, 2889, 1404923, 98777227, 98777227, 1404923, 2889, 1; %e A154229 1, 4915, 4631612, 824036625, 14498379854, 824036625, 4631612, 4915, 1; %p A154229 T:= proc(n, k) option remember; %p A154229 if k=0 or k=n then 1 %p A154229 else T(n-1, k) + T(n-1, k-1) + binomial(n+2,2)^2*T(n-2, k-1) %p A154229 fi; end: %p A154229 seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Mar 02 2021 %t A154229 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + Binomial[n+2, 2]^2*T[n-2, k-1]]; %t A154229 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Mar 02 2021 *) %o A154229 (Sage) %o A154229 def f(n): return binomial(n+2,2)^2 %o A154229 def T(n,k): %o A154229 if (k==0 or k==n): return 1 %o A154229 else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1) %o A154229 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 02 2021 %o A154229 (Magma) %o A154229 f:= func< n | Binomial(n+2,2)^2 >; %o A154229 function T(n,k) %o A154229 if k eq 0 or k eq n then return 1; %o A154229 else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1); %o A154229 end if; return T; %o A154229 end function; %o A154229 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 02 2021 %Y A154229 Cf. A154227, A154228, A154230, A154231, A154233. %Y A154229 Cf. A000537. %K A154229 nonn,tabl %O A154229 0,5 %A A154229 _Roger L. Bagula_, Jan 05 2009 %E A154229 Edited by _G. C. Greubel_, Mar 02 2021