cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154258 Number of triples such that p+F_s+(F_t)^2=n, where p is an odd prime, s and t are greater than one and the Fibonacci number F_s or F_t is odd.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 2, 4, 3, 5, 4, 5, 6, 3, 5, 6, 5, 7, 4, 5, 7, 4, 6, 7, 6, 6, 6, 5, 11, 6, 8, 6, 6, 7, 6, 9, 9, 4, 9, 5, 9, 10, 6, 8, 8, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 05 2009

Keywords

Comments

Zhi-Wei Sun conjectured that a(n)>0 for all n=5,6,... (i.e., any integer n>4 can be written as the sum of an odd prime, a positive Fibonacci number and a square of a positive Fibonacci number, with one of the two Fibonacci numbers odd). He has verified this for n up to 3*10^7.
Zhi-Wei Sun has offered a monetary reward for settling this conjecture.

Examples

			For n=10 the a(10)=3 solutions are 3+F_4+(F_3)^2, 5+F_2+(F_3)^2, 7+F_3+(F_2)^2.
		

References

  • R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
  • Z. W. Sun and M. H. Le, Integers not of the form c(2^a+2^b)+p^{alpha}, Acta Arith. 99(2001), 183-190.

Crossrefs

Programs

  • Mathematica
    PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[(Mod[n,2]==0||Mod[x,3]>0)&&PQ[n-(Fibonacci[x])^2-Fibonacci[y]],1,0], {x,2,2*Log[2,Sqrt[n]+1]},{y,2,2*Log[2,Max[2,n-(Fibonacci[x])^2]]}] Do[Print[n," ",RN[n]];Continue,{n,1,50000}]