This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154262 #47 Oct 31 2024 13:39:06 %S A154262 3,2,19,54,107,178,267,374,499,642,803,982,1179,1394,1627,1878,2147, %T A154262 2434,2739,3062,3403,3762,4139,4534,4947,5378,5827,6294,6779,7282, %U A154262 7803,8342,8899,9474,10067,10678,11307,11954,12619,13302,14003,14722,15459,16214,16987 %N A154262 a(n) = 9*n^2 - 10*n + 3. %C A154262 The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - a(n+1)*A154266(n)^2 = 1. - _Vincenzo Librandi_, Feb 03 2012 %C A154262 For n >= 1, the continued fraction expansion of sqrt(a(n)) is [3n-2; {2, 1, 3n-3, 1, 2, 6n-4}]. For n=1, this collapses to [1; {2}]. - _Magus K. Chu_, Sep 05 2022 %H A154262 Vincenzo Librandi, <a href="/A154262/b154262.txt">Table of n, a(n) for n = 0..10000</a> %H A154262 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A154262 From _Vincenzo Librandi_, Feb 02 2012: (Start) %F A154262 G.f.: (3 - 7*x + 22*x^2)/(1-x)^3. %F A154262 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End) %F A154262 E.g.f.: (3 - x + 9*x^2)*exp(x). - _Elmo R. Oliveira_, Oct 31 2024 %t A154262 LinearRecurrence[{3, -3, 1}, {2, 19, 54}, 50] (* _Vincenzo Librandi_, Feb 02 2012 *) %t A154262 Table[9n^2-10n+3,{n,0,50}] (* _Harvey P. Dale_, Feb 11 2023 *) %o A154262 (PARI) a(n)=9*n^2-10*n+3 \\ _Charles R Greathouse IV_, Dec 27 2011 %o A154262 (Magma) I:=[2, 19, 54]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 02 2012 %Y A154262 Cf. A154266, A154295. %K A154262 nonn,easy %O A154262 0,1 %A A154262 _Vincenzo Librandi_, Jan 06 2009 %E A154262 Edited by _Charles R Greathouse IV_, Jul 25 2010