cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154263 Number of triples such that p+F_s+(F_t)^3=n, where p is an odd prime, s and t are greater than one and F_s or F_t is odd.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 1, 3, 1, 2, 2, 2, 4, 2, 5, 3, 2, 3, 4, 3, 4, 2, 3, 4, 5, 3, 4, 2, 2, 3, 7, 6, 5, 6, 3, 4, 5, 4, 9, 4, 6, 6, 3, 7, 7, 5, 5, 4, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 06 2009

Keywords

Comments

Zhi-Wei Sun conjectured that a(n)>0 for every n=5,6,...; in other words, any integer n>4 can be written as the sum of an odd prime, a positive Fibonacci number and a cube of a positive Fibonacci number, with one of two Fibonacci numbers odd. He has verified this up to 3*10^7.
Zhi-Wei Sun has offered a monetary reward for settling this conjecture.

Examples

			For n=14 the a(14)=4 solutions are 3+F_4+(F_3)^3, 5+F_2+(F_3)^3, 5+F_6+(F_2)^3, 11+F_3+(F_2)^3
		

References

  • R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
  • Z. W. Sun and M. H. Le, Integers not of the form c(2^a+2^b)+p^{alpha}, Acta Arith. 99(2001), 183-190.

Crossrefs

Programs

  • Mathematica
    PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[(Mod[n,2]==0||Mod[x,3]>0)&&PQ[n-(Fibonacci[x])^3-Fibonacci[y]],1,0], {x,2,2*Log[2,n^(1/3)+1]},{y,2,2*Log[2,Max[2,n-(Fibonacci[x])^3]]}] Do[Print[n," ",RN[n]];Continue,{n,1,50000}]