A154263
Number of triples such that p+F_s+(F_t)^3=n, where p is an odd prime, s and t are greater than one and F_s or F_t is odd.
0, 0, 0, 0, 1, 1, 2, 1, 3, 1, 2, 2, 2, 4, 2, 5, 3, 2, 3, 4, 3, 4, 2, 3, 4, 5, 3, 4, 2, 2, 3, 7, 6, 5, 6, 3, 4, 5, 4, 9, 4, 6, 6, 3, 7, 7, 5, 5, 4, 5
Offset: 1
Keywords
Examples
For n=14 the a(14)=4 solutions are 3+F_4+(F_3)^3, 5+F_2+(F_3)^3, 5+F_6+(F_2)^3, 11+F_3+(F_2)^3
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
- Z. W. Sun and M. H. Le, Integers not of the form c(2^a+2^b)+p^{alpha}, Acta Arith. 99(2001), 183-190.
Links
- Zhi-Wei SUN, Table of n, a(n), n=1..50000.
- D. S. McNeil, Sun's strong conjecture
- Zhi-Wei Sun, A promising conjecture: n=p+F_s+F_t
- Zhi-Wei Sun, A summary concerning my conjecture n=p+F_s+F_t
- K. J. Wu and Z. W. Sun, Covers of the integers with odd moduli and their applications to the forms x^m-2^n and x^2-F_{3n}/2, Math. Comp., in press. arXiv:math.NT/0702382
Programs
-
Mathematica
PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[(Mod[n,2]==0||Mod[x,3]>0)&&PQ[n-(Fibonacci[x])^3-Fibonacci[y]],1,0], {x,2,2*Log[2,n^(1/3)+1]},{y,2,2*Log[2,Max[2,n-(Fibonacci[x])^3]]}] Do[Print[n," ",RN[n]];Continue,{n,1,50000}]
Comments