This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154283 #75 Jan 28 2025 10:52:07 %S A154283 1,1,4,1,1,20,48,20,1,1,72,603,1168,603,72,1,1,232,5158,27664,47290, %T A154283 27664,5158,232,1,1,716,37257,450048,1822014,2864328,1822014,450048, %U A154283 37257,716,1,1,2172,247236,6030140,49258935,163809288,242384856,163809288,49258935,6030140,247236,2172,1 %N A154283 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(2*n+1,i) * binomial(k+2-i,2)^n, 0 <= k <= 2*(n-1). %C A154283 From _Yahia Kahloune_, Jan 30 2014: (Start) %C A154283 In general, let b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,2,n). %C A154283 With these coefficients we can calculate: Sum_{i=1..n} binomial(i+e-1,e)^p = Sum_{k=0..e*(p-1)} b(k,e,p)*binomial(n+e+k,e*p+k). %C A154283 For example, A085438(n) = Sum_{i=1..n} binomial(1+i,2)^3 = T(3,0)*binomial(2+n,7) + T(3,1)*binomial(3+n,7) + T(3,2)*binomial(4+n,7) + T(3,3)*binomial(5+n,7) + T(3,4)*binomial(6+n,7) = (1/5040)*(90*n^7 + 630*n^6 + 1638*n^5 + 1890*n^4 + 840*n^3 - 48*n). %C A154283 (End) %C A154283 T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - _Andrew Howroyd_, May 06 2020 %H A154283 Andrew Howroyd, <a href="/A154283/b154283.txt">Table of n, a(n) for n = 1..1600</a> (rows 1..40) %H A154283 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 12. %H A154283 Helmut Prodinger, <a href="https://arxiv.org/abs/1102.5186">On Touchard's continued fraction and extensions: combinatorics-free, self-contained proofs </a>, arXiv:1102.5186 [math.CO], 2011. %F A154283 T(n,k) = (-1) times coefficient of x^k in (x-1)^(2*n+1) * Sum_{k>=0} (k*(k+1)/2)^n *x^(k-1). %F A154283 From _Yahia Kahloune_, Jan 29 2014: (Start) %F A154283 Sum_{i=1..n} binomial(1+i,2)^p = Sum_{k=0..2*p-2} T(p,k)*binomial(n+2+k,2*p+1). %F A154283 binomial(n,2)^p = Sum_{k=0..2*p-2} T(p,k)*binomial(n+k,2*p). (End) %F A154283 From _Peter Bala_, Dec 21 2019: (Start) %F A154283 E.g.f. as a continued fraction: (1-x)/(1-x + ( 1-exp((1-x)^2*t))*x/(1-x + (1-exp(2*(1-x)^2*t))*x/(1-x + (1-exp(3*(1-x)^2*t))*x/(1-x + ... )))) = 1 + x*t + x*(x^2 + 4*x + 1)*t^2/2! + x*(x^4 + 20*x^3 + 48*x^2 + 20*x + 1)*t^3/3! + ... (use Prodinger equation 1.1). %F A154283 The sequence of alternating row sums (unsigned) [1, 1, 2, 10, 104, 1816,...] appears to be A005799. (End) %e A154283 Triangle begins: %e A154283 1; %e A154283 1, 4, 1; %e A154283 1, 20, 48, 20, 1; %e A154283 1, 72, 603, 1168, 603, 72, 1; %e A154283 1, 232, 5158, 27664, 47290, 27664, 5158, 232, 1; %e A154283 1, 716, 37257, 450048, 1822014, 2864328, 1822014, ...; %e A154283 1, 2172, 247236, 6030140, 49258935, 163809288, 242384856, ...; %e A154283 1, 6544, 1568215, 72338144, 1086859301, 6727188848, 19323413187, ...; %e A154283 1, 19664, 9703890, 811888600, 21147576440, 225167210712, ... ; %e A154283 ... %e A154283 The T(2,1) = 4 permutations of 1122 with 1 descent are 1212, 1221, 2112, 2211. - _Andrew Howroyd_, May 15 2020 %p A154283 A154283 := proc(n,k) %p A154283 (1-x)^(2*n+1)*add( (l*(l+1)/2)^n*x^(l-1),l=0..k+1) ; %p A154283 coeftayl(%,x=0,k) ; %p A154283 end proc: # _R. J. Mathar_, Feb 01 2013 %t A154283 p[x_, n_]= (1-x)^(2*n+1)*Sum[(k*(k+1)/2)^n*x^k, {k, 0, Infinity}]/x; %t A154283 Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n,10}]//Flatten %o A154283 (PARI) T(n,k)={sum(i=0, k, (-1)^i*binomial(2*n+1, i)*binomial(k+2-i, 2)^n)} \\ _Andrew Howroyd_, May 09 2020 %o A154283 (Magma) [(&+[(-1)^j*Binomial(2*n+1,j)*Binomial(k-j+2,2)^n: j in [0..k]]): k in [0..2*n-2], n in [1..12]]; // _G. C. Greubel_, Jun 13 2022 %o A154283 (SageMath) %o A154283 def A154283(n,k): return sum((-1)^j*binomial(2*n+1, j)*binomial(k-j+2, 2)^n for j in (0..k)) %o A154283 flatten([[A154283(n,k) for k in (0..2*n-2)] for n in (1..12)]) # _G. C. Greubel_, Jun 13 2022 %Y A154283 Columns k=0..9 are A000012, A061981, A151624, A151625, A151626, A151627, A151628, A151629, A151630, A151631. %Y A154283 Row sums are A000680. %Y A154283 Similar triangles for e=1..6: A173018 (or A008292), this sequence, A174266, A236463, A237202, A237252. %Y A154283 Cf. A000680, A005799, A085438, A334781. %K A154283 nonn,easy,tabf %O A154283 1,3 %A A154283 _Roger L. Bagula_, Jan 06 2009 %E A154283 Edited by _N. J. A. Sloane_, Jan 30 2014 following suggestions from _Yahia Kahloune_ (among other things, the signs of all terms have been reversed). %E A154283 Edited by _Andrew Howroyd_, May 09 2020