cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154312 Triangle T(n,k), 0<=k<=n, read by rows, given by [0,1/2,-1/2,0,0,0,0,0,0,0,...] DELTA [2,-1/2,-1/2,2,0,0,0,0,0,0,0 ...] where DELTA is the operator defined in A084938 .

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 3, 5, 0, 0, 0, 7, 9, 0, 0, 0, 0, 15, 17, 0, 0, 0, 0, 0, 31, 33, 0, 0, 0, 0, 0, 0, 63, 65, 0, 0, 0, 0, 0, 0, 0, 127, 129, 0, 0, 0, 0, 0, 0, 0, 0, 255, 257, 0, 0, 0, 0, 0, 0, 0, 0, 0, 511, 513, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1023, 1025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2047
Offset: 0

Views

Author

Philippe Deléham, Jan 07 2009

Keywords

Comments

Column sums give A003945.

Examples

			Triangle begins:
1;
0, 2;
0, 1, 3;
0, 0, 3, 5;
0, 0, 0, 7, 9;
0, 0, 0, 0, 15, 17; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n}T(n,k)*x^(n-k)= A040000(n), A094373(n), A000079(n), A083329(n), A095121(n), A154117(n), A131128(n), A154118(n), A131130(n), A154251(n), A154252(n) for x = -1,0,1,2,3,4,5,6,7,8,9 respectively.
G.f.: (1-x*y+x^2*y-x^2*y^2)/(1-3*x*y+2*x^2*y^2). - Philippe Deléham, Nov 02 2013
T(n,k) = 3*T(n-1,k-1) - 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(2,0) = 0, T(2,1) = 1, T(2,2) = 3, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 02 2013