cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154314 Numbers with not more than two distinct digits in ternary representation.

This page as a plain text file.
%I A154314 #17 Apr 14 2025 05:33:07
%S A154314 0,1,2,3,4,5,6,7,8,9,10,12,13,14,16,17,18,20,22,23,24,25,26,27,28,30,
%T A154314 31,36,37,39,40,41,43,44,49,50,52,53,54,56,60,62,67,68,70,71,72,74,76,
%U A154314 77,78,79,80,81,82,84,85,90,91,93,94,108,109,111,112,117,118,120,121,122
%N A154314 Numbers with not more than two distinct digits in ternary representation.
%H A154314 Reinhard Zumkeller, <a href="/A154314/b154314.txt">Table of n, a(n) for n = 1..10000</a>
%H A154314 Robert Baillie and Thomas Schmelzer, <a href="https://library.wolfram.com/infocenter/MathSource/7166/">Summing Kempner's Curious (Slowly-Convergent) Series</a>, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
%F A154314 A043530(a(n)) <= 2.
%F A154314 A212193(a(n)) <> 3. - _Reinhard Zumkeller_, May 04 2012
%F A154314 a(n) >> n^1.58..., where the exponent is log(3)/log(2). - _Charles R Greathouse IV_, Mar 17 2014
%F A154314 Sum_{n>=2} 1/a(n) = 5.47555542241781419692840472181029603722178623821762258873485212626135391726959422416350447132335696748507... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - _Amiram Eldar_, Apr 14 2025
%t A154314 Select[Range[0,200],Length[Union[IntegerDigits[#,3]]]<3&] (* _Harvey P. Dale_, Nov 23 2012 *)
%o A154314 (Haskell)
%o A154314 import Data.List (findIndices)
%o A154314 a154314 n = a154314_list !! (n-1)
%o A154314 a154314_list = findIndices (/= 3) a212193_list
%o A154314 -- _Reinhard Zumkeller_, May 04 2012
%o A154314 (PARI) is(n)=#Set(digits(n,3))<3 \\ _Charles R Greathouse IV_, Mar 17 2014
%Y A154314 Complement of A031944.
%Y A154314 Union of A032924, A005823 and A005836.
%Y A154314 Cf. A007089, A043530, A212193.
%K A154314 base,nonn
%O A154314 1,3
%A A154314 _Reinhard Zumkeller_, Jan 07 2009