This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154341 #18 Feb 03 2025 00:13:33 %S A154341 1,1,-1,1,-3,1,1,-7,6,0,1,-15,25,0,-6,1,-31,90,0,-90,30,1,-63,301,0, %T A154341 -840,630,-90,1,-127,966,0,-6300,7980,-2520,0,1,-255,3025,0,-41706, %U A154341 79380,-41580,0,2520 %N A154341 E(n,k), an additive decomposition of the Euler number (triangle read by rows). %C A154341 The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=0 these polynomials result in a decomposition of the Euler number A122045. %H A154341 G. C. Greubel, <a href="/A154341/b154341.txt">Table of n, a(n) for the first 50 rows</a> %H A154341 Peter Luschny, <a href="http://www.luschny.de/math/seq/SwissKnifePolynomials.html">The Swiss-Knife polynomials.</a> %F A154341 Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation). %F A154341 E(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*c(k)*(v+1)^n, %F A154341 A122045(n) = Sum_{k=0..n} E(n,k). %e A154341 Triangle begins: %e A154341 1, %e A154341 1, -1, %e A154341 1, -3, 1, %e A154341 1, -7, 6, 0, %e A154341 1, -15, 25, 0, -6, %e A154341 1, -31, 90, 0, -90, 30, %e A154341 1, -63, 301, 0, -840, 630, -90, %e A154341 1, -127, 966, 0, -6300, 7980, -2520, 0, %e A154341 1, -255, 3025, 0, -41706, 79380, -41580, 0, 2520, %e A154341 ... %p A154341 E := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*c(k)*(v+1)^n,v=0..k) end: seq(print(seq(E(n,k),k=0..n)),n=0..8); %t A154341 c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; e[n_, k_] := Sum[(-1)^v*Binomial[k, v]*c[k]*(v+1)^n, {v, 0, k}]; Table[e[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 30 2013, after Maple *) %Y A154341 Cf. A122045, A153641, A154342, A154343, A154344, A154345. %K A154341 easy,sign,tabl %O A154341 0,5 %A A154341 _Peter Luschny_, Jan 07 2009