cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154341 E(n,k), an additive decomposition of the Euler number (triangle read by rows).

This page as a plain text file.
%I A154341 #18 Feb 03 2025 00:13:33
%S A154341 1,1,-1,1,-3,1,1,-7,6,0,1,-15,25,0,-6,1,-31,90,0,-90,30,1,-63,301,0,
%T A154341 -840,630,-90,1,-127,966,0,-6300,7980,-2520,0,1,-255,3025,0,-41706,
%U A154341 79380,-41580,0,2520
%N A154341 E(n,k), an additive decomposition of the Euler number (triangle read by rows).
%C A154341 The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=0 these polynomials result in a decomposition of the Euler number A122045.
%H A154341 G. C. Greubel, <a href="/A154341/b154341.txt">Table of n, a(n) for the first 50 rows</a>
%H A154341 Peter Luschny, <a href="http://www.luschny.de/math/seq/SwissKnifePolynomials.html">The Swiss-Knife polynomials.</a>
%F A154341 Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
%F A154341 E(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*c(k)*(v+1)^n,
%F A154341 A122045(n) = Sum_{k=0..n} E(n,k).
%e A154341 Triangle begins:
%e A154341   1,
%e A154341   1,   -1,
%e A154341   1,   -3,    1,
%e A154341   1,   -7,    6, 0,
%e A154341   1,  -15,   25, 0,     -6,
%e A154341   1,  -31,   90, 0,    -90,    30,
%e A154341   1,  -63,  301, 0,   -840,   630,    -90,
%e A154341   1, -127,  966, 0,  -6300,  7980,  -2520,  0,
%e A154341   1, -255, 3025, 0, -41706, 79380, -41580,  0, 2520,
%e A154341   ...
%p A154341 E := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*c(k)*(v+1)^n,v=0..k) end: seq(print(seq(E(n,k),k=0..n)),n=0..8);
%t A154341 c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; e[n_, k_] := Sum[(-1)^v*Binomial[k, v]*c[k]*(v+1)^n, {v, 0, k}]; Table[e[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 30 2013, after Maple *)
%Y A154341 Cf. A122045, A153641, A154342, A154343, A154344, A154345.
%K A154341 easy,sign,tabl
%O A154341 0,5
%A A154341 _Peter Luschny_, Jan 07 2009