cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154342 T(n,k) an additive decomposition of the signed tangent number (triangle read by rows).

This page as a plain text file.
%I A154342 #15 Feb 03 2025 01:54:14
%S A154342 1,2,-1,4,-5,1,8,-19,9,0,16,-65,55,0,-6,32,-211,285,0,-120,30,64,-665,
%T A154342 1351,0,-1470,810,-90,128,-2059,6069,0,-14280,13020,-3150,0
%N A154342 T(n,k) an additive decomposition of the signed tangent number (triangle read by rows).
%C A154342 The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1 these polynomials result in a decomposition of the signed tangent numbers A009006.
%H A154342 G. C. Greubel, <a href="/A154342/b154342.txt">Table of n, a(n) for the first 50 rows</a>
%H A154342 Peter Luschny, <a href="http://www.luschny.de/math/seq/SwissKnifePolynomials.html">The Swiss-Knife polynomials.</a>
%F A154342 Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
%F A154342 T(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*c(k)*(v+2)^n.
%F A154342 A155585(n) = Sum_{k=0..n} T(n,k).
%e A154342 Triangle begins:
%e A154342     1,
%e A154342     2,    -1,
%e A154342     4,    -5,    1,
%e A154342     8,   -19,    9, 0,
%e A154342    16,   -65,   55, 0,     -6,
%e A154342    32,  -211,  285, 0,   -120,    30,
%e A154342    64,  -665, 1351, 0,  -1470,   810,   -90,
%e A154342   128, -2059, 6069, 0, -14280, 13020, -3150, 0,
%e A154342   ...
%p A154342 T := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*c(k)*(v+2)^n,v=0..k) end: seq(print(seq(T(n,k),k=0..n)),n=0..8);
%t A154342 c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; t[n_, k_] := Sum[(-1)^v*Binomial[k, v]*c[k]*(v+2)^n, {v, 0, k}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 30 2013, after Maple *)
%Y A154342 Cf. A009006, A155585.
%Y A154342 Cf. A153641, A154341, A154343, A154344, A154345.
%K A154342 easy,sign,tabl
%O A154342 0,2
%A A154342 _Peter Luschny_, Jan 07 2009