This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154343 #18 Feb 03 2025 01:54:41 %S A154343 1,3,-2,9,-16,4,27,-98,60,0,81,-544,616,0,-96,243,-2882,5400,0,-3360, %T A154343 960,729,-14896,43564,0,-72480,46080,-5760,2187,-75938,334740,0, %U A154343 -1246560,1323840,-362880,0,6561,-384064,2495056,0,-18801216,29675520 %N A154343 S(n,k) an additive decomposition of the Springer number (generalized Euler number), (triangle read by rows). %C A154343 The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1/2 and multiplied by 2^n these polynomials result in a decomposition of the Springer numbers A001586. %H A154343 G. C. Greubel, <a href="/A154343/b154343.txt">Table of n, a(n) for n = 0..1274</a> %H A154343 Peter Luschny, <a href="http://www.luschny.de/math/seq/SwissKnifePolynomials.html">The Swiss-Knife polynomials.</a> %F A154343 Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation). %F A154343 S(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*2^n*c(k)*(v+3/2)^n. %F A154343 A188458(n) = Sum_{k=0..n} S(n,k). %e A154343 Triangle begins: %e A154343 1, %e A154343 3, -2, %e A154343 9, -16, 4, %e A154343 27, -98, 60, 0, %e A154343 81, -544, 616, 0, -96, %e A154343 243, -2882, 5400, 0, -3360, 960, %e A154343 729, -14896, 43564, 0, -72480, 46080, -5760, %e A154343 2187, -75938, 334740, 0, -1246560, 1323840, -362880, 0, %e A154343 6561, -384064, 2495056, 0, -18801216, 29675520, -13386240, 0, 645120, %e A154343 ... %p A154343 S := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*2^n*c(k)*(v+3/2)^n,v=0..k) end: seq(print(seq(S(n,k),k=0..n)),n=0..8); %t A154343 c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; s[n_, k_] := Sum[(-1)^v*Binomial[k, v]*2^n*c[k]*(v+3/2)^n, {v, 0, k}]; Table[s[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 30 2013, after Maple *) %Y A154343 Cf. A001586, A188458. %Y A154343 Cf. A153641, A154341, A154342, A154344, A154345. %K A154343 easy,sign,tabl %O A154343 0,2 %A A154343 _Peter Luschny_, Jan 07 2009