cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154343 S(n,k) an additive decomposition of the Springer number (generalized Euler number), (triangle read by rows).

This page as a plain text file.
%I A154343 #18 Feb 03 2025 01:54:41
%S A154343 1,3,-2,9,-16,4,27,-98,60,0,81,-544,616,0,-96,243,-2882,5400,0,-3360,
%T A154343 960,729,-14896,43564,0,-72480,46080,-5760,2187,-75938,334740,0,
%U A154343 -1246560,1323840,-362880,0,6561,-384064,2495056,0,-18801216,29675520
%N A154343 S(n,k) an additive decomposition of the Springer number (generalized Euler number), (triangle read by rows).
%C A154343 The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1/2 and multiplied by 2^n these polynomials result in a decomposition of the Springer numbers A001586.
%H A154343 G. C. Greubel, <a href="/A154343/b154343.txt">Table of n, a(n) for n = 0..1274</a>
%H A154343 Peter Luschny, <a href="http://www.luschny.de/math/seq/SwissKnifePolynomials.html">The Swiss-Knife polynomials.</a>
%F A154343 Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
%F A154343 S(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*2^n*c(k)*(v+3/2)^n.
%F A154343 A188458(n) = Sum_{k=0..n} S(n,k).
%e A154343 Triangle begins:
%e A154343   1,
%e A154343   3,    -2,
%e A154343   9,    -16,     4,
%e A154343   27,   -98,     60,      0,
%e A154343   81,   -544,    616,     0, -96,
%e A154343   243,  -2882,   5400,    0, -3360,     960,
%e A154343   729,  -14896,  43564,   0, -72480,    46080,    -5760,
%e A154343   2187, -75938,  334740,  0, -1246560,  1323840,  -362880,   0,
%e A154343   6561, -384064, 2495056, 0, -18801216, 29675520, -13386240, 0, 645120,
%e A154343   ...
%p A154343 S := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*2^n*c(k)*(v+3/2)^n,v=0..k) end: seq(print(seq(S(n,k),k=0..n)),n=0..8);
%t A154343 c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; s[n_, k_] := Sum[(-1)^v*Binomial[k, v]*2^n*c[k]*(v+3/2)^n, {v, 0, k}]; Table[s[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 30 2013, after Maple *)
%Y A154343 Cf. A001586, A188458.
%Y A154343 Cf. A153641, A154341, A154342, A154344, A154345.
%K A154343 easy,sign,tabl
%O A154343 0,2
%A A154343 _Peter Luschny_, Jan 07 2009