cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154349 Sum of proper divisors minus the number of proper divisors of Motzkin number A001006(n).

This page as a plain text file.
%I A154349 #12 Nov 26 2019 04:18:25
%S A154349 0,0,0,1,2,8,18,0,34,170,1643,3603,0,25118,139063,474559,284490,
%T A154349 984006,6536387,24265729,18678366,96214018,277799290,1282283434,
%U A154349 2077807072,1899874612,19252363859,44221482383,1967547352,29743945396,1265868622
%N A154349 Sum of proper divisors minus the number of proper divisors of Motzkin number A001006(n).
%C A154349 Note that, if a(n) != 0 then Motzkin number A001006(n) is a composite number (A002808), otherwise A001006(n) is a noncomposite number (A008578). See A152770.
%H A154349 Amiram Eldar, <a href="/A154349/b154349.txt">Table of n, a(n) for n = 0..201</a>
%F A154349 a(n) = A001065(A001006(n)) - A032741(A001006(n)) = A152770(A001006(n)).
%p A154349 with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(sigma(M(n))-M(n)-tau(M(n))+1, n = 0 .. 30); # _Emeric Deutsch_, Jan 12 2009
%t A154349 mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; diff[n_] := DivisorSigma[1, n] - DivisorSigma[0, n] - n + 1; Table[diff[mot[n]], {n, 0, 30}] (* _Amiram Eldar_, Nov 26 2019 *)
%Y A154349 Cf. A001006, A001065, A002808, A032741, A008578, A152770, A152981, A152982, A152983, A152988, A152990.
%K A154349 nonn
%O A154349 0,5
%A A154349 _Omar E. Pol_, Jan 07 2009
%E A154349 Extended by _Emeric Deutsch_, Jan 12 2009