This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154380 #22 Jun 15 2019 07:24:47 %S A154380 1,1,1,2,3,1,5,9,5,1,15,29,20,7,1,52,102,77,35,9,1,203,392,302,157,54, %T A154380 11,1,877,1641,1235,683,277,77,13,1,4140,7451,5324,2987,1329,445,104, %U A154380 15,1,21147,36525,24329,13391,6230,2340,669,135,17,1 %N A154380 The Riordan square of the Bell numbers. Triangle T(n, k), 0 <= k <= n, read by rows. %C A154380 The Riordan square is defined in A321620. %C A154380 Previous name was: Triangle T(n,k), 0<=k<=n, read by rows given by [1, 1, 1, 2, 1, 3, 1, 4, 1, ...] DELTA [1, 0, 0, 0, ...] where DELTA is the operator defined in A084938. %C A154380 In general, the triangle [r_0, r_1, r_2, ...] DELTA [s_0, s_1, s_2, ...] has generating function %C A154380 1/(1 - (r_0*x + s_0*x*y)/(1 - (r_1*x + s_1*x*y)/(1 - (r_2*x + s_2*x*y)/(1 -... (continued fraction) %C A154380 A130167*A007318 as infinite lower triangular matrices. - _Philippe Deléham_, Jan 11 2009 %H A154380 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry3/barry93.html">Continued fractions and transformations of integer sequences</a>, JIS 12 (2009) 09.7.6. %F A154380 G.f.: 1/(1-(x+xy)/(1-x/(1-x/(1-2x/(1-x/(1-3x/(1-x/(1-4x/(1-... (continued fraction). %e A154380 Triangle begins %e A154380 1; %e A154380 1, 1; %e A154380 2, 3, 1; %e A154380 5, 9, 5, 1; %e A154380 15, 29, 20, 7, 1; %e A154380 52, 102, 77, 35, 9, 1; %e A154380 203, 392, 302, 157, 54, 11, 1; %p A154380 # The function RiordanSquare is defined in A321620. %p A154380 RiordanSquare(add(x^k/mul(1-j*x, j=1..k), k=0..10), 10); # _Peter Luschny_, Dec 06 2018 %t A154380 RiordanSquare[gf_, len_] := Module[{T}, T[n_, k_] := T[n, k] = If[k == 0, SeriesCoefficient[gf, {x, 0, n}], Sum[T[j, k - 1] T[n - j, 0], {j, k - 1, n - 1}]]; Table[T[n, k], {n, 0, len - 1}, {k, 0, n}]]; %t A154380 RiordanSquare[Sum[x^k/Product[1 - j x, {j, 1, k}], {k, 0, 10}], 10] (* _Jean-François Alcover_, Jun 15 2019, from Maple *) %Y A154380 First column are the Bell numbers A000110. %Y A154380 Row sums are A154381, alternating row sums are A000007. %Y A154380 Cf. A321620. %K A154380 easy,nonn,tabl %O A154380 0,4 %A A154380 _Paul Barry_, Jan 08 2009 %E A154380 New name by _Peter Luschny_, Dec 06 2018