This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154387 #13 Jan 07 2019 04:21:49 %S A154387 4,6,8,15,20,22,24,26,28,33,35,39,40,42,44,46,48,51,55,57,60,62,64,66, %T A154387 68,75,77,80,82,84,86,88,91,93,95,99,105,110,112,114,116,118,121,123, %U A154387 125,129,130,132,134,136,138,141,143,145,147,150,152,154,156,158,161 %N A154387 Composite numbers with even sum of digits. %H A154387 Harvey P. Dale, <a href="/A154387/b154387.txt">Table of n, a(n) for n = 1..1000</a> %e A154387 15 is composite and 1 + 5 = 6 (an even number), so 15 is a term; %e A154387 20 is composite and 2 + 0 = 2 (an even number), so 20 is a term. %p A154387 sd := proc (n) options operator, arrow: add(convert(n, base, 10)[j], j = 1 .. nops(convert(n, base, 10))) end proc: a := proc (n) if isprime(n) = false and `mod`(sd(n), 2) = 0 then n else end if end proc: seq(a(n), n = 2 .. 180); # _Emeric Deutsch_, Jan 17 2009 %t A154387 Select[Range[200],CompositeQ[#]&&EvenQ[Total[IntegerDigits[#]]]&] (* _Harvey P. Dale_, Aug 25 2016 *) %Y A154387 Intersection of A002808 and A054683. %K A154387 nonn,base %O A154387 1,1 %A A154387 _Juri-Stepan Gerasimov_, Jan 08 2009 %E A154387 Replaced 45 by 46 - _R. J. Mathar_, Jan 12 2009 %E A154387 More terms from _Emeric Deutsch_, Jan 17 2009