This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154402 #30 Dec 31 2023 06:23:45 %S A154402 1,1,2,1,1,2,2,1,2,1,1,2,1,2,3,1,1,2,1,1,3,1,1,2,1,1,2,2,1,3,2,1,2,1, %T A154402 2,2,1,1,2,1,1,3,1,1,3,1,1,2,2,1,2,1,1,2,1,2,2,1,1,3,1,2,4,1,1,2,1,1, %U A154402 2,2,1,2,1,1,3,1,2,2,1,1,2,1,1,3,1,1,2,1,1,3,2,1,3,1,1,2,1,2,2,1,1,2,1,1,4 %N A154402 Inverse Moebius transform of Fredholm-Rueppel sequence, cf. A036987. %C A154402 Number of ways to write n as a sum a_1 + ... + a_k where the a_i are positive integers and a_i = 2 * a_{i-1}, cf. A000929. %C A154402 Number of divisors of n of the form 2^k - 1 (A000225) for k >= 1. - _Jeffrey Shallit_, Jan 23 2017 %H A154402 Antti Karttunen, <a href="/A154402/b154402.txt">Table of n, a(n) for n = 1..65537</a> (first 10000 terms from Robert Israel) %F A154402 G.f.: Sum_{k>0} x^(2^k-1)/(1-x^(2^k-1)). %F A154402 From _Antti Karttunen_, Jun 11 2018: (Start) %F A154402 a(n) = Sum_{d|n} A036987(d). %F A154402 a(n) = A305426(n) + A036987(n). (End) %F A154402 a(n) = A147645(n) + A353786(n). - _Antti Karttunen_, May 12 2022 %F A154402 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A065442 = 1.606695... . - _Amiram Eldar_, Dec 31 2023 %p A154402 N:= 200: # to get a(1)..a(N) %p A154402 A:= Vector(N): %p A154402 for k from 1 do %p A154402 t:= 2^k-1; %p A154402 if t > N then break fi; %p A154402 R:= [seq(i,i=t..N,t)]; %p A154402 A[R]:= map(`+`,A[R],1) %p A154402 od: %p A154402 convert(A,list); # _Robert Israel_, Jan 23 2017 %t A154402 Table[DivisorSum[n, 1 &, IntegerQ@ Log2[# + 1] &], {n, 105}] (* _Michael De Vlieger_, Jun 11 2018 *) %o A154402 (PARI) %o A154402 A209229(n) = (n && !bitand(n,n-1)); %o A154402 A036987(n) = A209229(1+n); %o A154402 A154402(n) = sumdiv(n,d,A036987(d)); \\ _Antti Karttunen_, Jun 11 2018 %o A154402 (PARI) A154402(n) = { my(m=1,s=0); while(m<=n, s += !(n%m); m += (m+1)); (s); }; \\ _Antti Karttunen_, May 12 2022 %Y A154402 Cf. A000225, A000929, A001511, A036987, A065442, A147645, A161790 (positions of 1's), A305426, A353786. %Y A154402 Cf. also A305436. %K A154402 easy,nonn %O A154402 1,3 %A A154402 _Vladeta Jovovic_, Jan 08 2009