cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154419 Primes of the form 20*k^2 + 36*k + 17.

This page as a plain text file.
%I A154419 #21 Feb 27 2025 15:16:59
%S A154419 17,73,953,1249,2377,2833,3329,4441,8737,12401,13417,15569,17881,
%T A154419 20353,21649,28729,33457,36809,49801,51817,62497,67049,71761,74177,
%U A154419 86857,89513,100537,103393,118273,121369,127681,134153,144161,161641,168913
%N A154419 Primes of the form 20*k^2 + 36*k + 17.
%C A154419 Also primes of the form 5*j^2 + 18*j + 17. (Proof: this format implies that j=2*k, even, because otherwise 5*j^2 + 18*j + 17 is even and cannot be prime. So 5*j^2 + 18*j + 17 = 20*k^2 + 36*k + 17.) - _R. J. Mathar_, Jan 12 2009
%H A154419 Vincenzo Librandi, <a href="/A154419/b154419.txt">Table of n, a(n) for n = 1..1000</a>
%t A154419 Select[Table[20n^2+36n+17,{n,0,6001}],PrimeQ] (* _Vincenzo Librandi_, Jul 23 2012 *)
%o A154419 (Magma)[a: n in [0..100] | IsPrime(a) where a is 20*n^2+36*n+17]; // _Vincenzo Librandi_, Jul 23 2012
%o A154419 (PARI) select(isprime, vector(100, n, 20*(n-1)^2 + 36*(n-1) + 17)) \\ _Robert C. Lyons_,  Feb 27 2025
%Y A154419 Cf. A017377, A154418.
%K A154419 nonn,easy
%O A154419 1,1
%A A154419 _Vincenzo Librandi_, Jan 09 2009