A154556 Exponential Riordan array [exp(-x), x(1+x/2)].
1, -1, 1, 1, -1, 1, -1, 0, 0, 1, 1, 2, -3, 2, 1, -1, -5, 5, -5, 5, 1, 1, 9, 0, -5, 0, 9, 1, -1, -14, -21, 35, -35, 21, 14, 1, 1, 20, 70, -56, 35, -56, 70, 20, 1, -1, -27, -162, -42, 189, -189, 42, 162, 27, 1
Offset: 0
Examples
Triangle begins 1, -1, 1, 1, -1, 1, -1, 0, 0, 1, 1, 2, -3, 2, 1, -1, -5, 5, -5, 5, 1, 1, 9, 0, -5, 0, 9, 1, -1, -14, -21, 35, -35, 21, 14, 1, 1, 20, 70, -56, 35, -56, 70, 20, 1, -1, -27, -162, -42, 189, -189, 42, 162, 27, 1, 1, 35, 315, 510, -735, 693, -735, 510, 315, 35, 1
Programs
-
Mathematica
(* The function RiordanArray is defined in A256893. *) RiordanArray[E^-#&, # (1 + #/2)&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
Formula
T(n,k) = (n!/k!)*sum{j=0..k, (-1)^(n-k)*C(k,j)*(-1/2)^j/(n-k-j)!};
T(n,k) = sum{j=0..n, (-1)^(n-j)*C(n,j)*C(j,k)*k!/((2k-j)!*2^(j-k))};
Comments