This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154575 #33 Nov 02 2024 12:15:39 %S A154575 18,36,58,84,114,148,186,228,274,324,378,436,498,564,634,708,786,868, %T A154575 954,1044,1138,1236,1338,1444,1554,1668,1786,1908,2034,2164,2298,2436, %U A154575 2578,2724,2874,3028,3186,3348,3514,3684,3858,4036,4218,4404,4594,4788,4986,5188 %N A154575 a(n) = 2*n^2 + 12*n + 4. %C A154575 Sixth diagonal of A144562. %C A154575 2*a(n) + 28 is a square. %H A154575 Vincenzo Librandi, <a href="/A154575/b154575.txt">Table of n, a(n) for n = 1..1000</a> %H A154575 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A154575 From _R. J. Mathar_, Jan 05 2011: (Start) %F A154575 a(n) = 2*A028881(n+3). %F A154575 G.f.: -2*x*(2*x-3)*(x-3)/(x-1)^3. (End) %F A154575 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Vincenzo Librandi_, Feb 26 2012 %F A154575 From _Amiram Eldar_, Feb 25 2023: (Start) %F A154575 Sum_{n>=1} 1/a(n) = 1/28 - cot(sqrt(7)*Pi)*Pi/(4*sqrt(7)). %F A154575 Sum_{n>=1} (-1)^(n+1)/a(n) = 31/84 - cosec(sqrt(7)*Pi)*Pi/(4*sqrt(7)). (End) %F A154575 E.g.f.: 2*exp(x)*(x^2 + 7*x + 2). - _Elmo R. Oliveira_, Nov 02 2024 %t A154575 LinearRecurrence[{3, -3, 1}, {18, 36, 58}, 50] (* _Vincenzo Librandi_, Feb 26 2012 *) %t A154575 Table[2n^2+12n+4,{n,50}] (* _Harvey P. Dale_, Sep 18 2019 *) %o A154575 (Magma) I:=[18, 36, 58]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 26 2012 %o A154575 (PARI) for(n=1, 50, print1(2*n^2+12*n+4", ")); \\ _Vincenzo Librandi_, Feb 26 2012 %Y A154575 Cf. A028881, A067076, A144562, A153238. %K A154575 nonn,easy %O A154575 1,1 %A A154575 _Vincenzo Librandi_, Jan 12 2009