This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154602 #35 Apr 19 2025 11:06:41 %S A154602 1,1,1,3,4,1,11,19,9,1,49,104,70,16,1,257,641,550,190,25,1,1539,4380, %T A154602 4531,2080,425,36,1,10299,32803,39515,22491,6265,833,49,1,75905, %U A154602 266768,365324,247072,87206,16016,1484,64,1,609441,2337505,3575820,2792476,1192086,281190,36204,2460,81,1 %N A154602 Exponential Riordan array [exp(sinh(x)*exp(x)), sinh(x)*exp(x)]. %C A154602 Triangle T(n,k), read by rows, given by [1,2,1,4,1,6,1,8,1,10,1,12,1,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 02 2009 %H A154602 G. C. Greubel, <a href="/A154602/b154602.txt">Rows n = 0..50 of the triangle, flattened</a> %F A154602 T(n, 0) = A004211(n). %F A154602 Sum_{k=0..n} T(n, k) = A055882(n) (row sums). %F A154602 From _Peter Bala_, Jun 15 2009: (Start) %F A154602 T(n,k) = Sum_{i = k..n} 2^(n-i)*binomial(i,k)*Stirling2(n,i). %F A154602 E.g.f.: exp((t+1)/2*(exp(2*x)-1)) = 1 + (1+t)*x + (3+4*t+t^2)*x^2/2! + .... %F A154602 Row generating polynomials R_n(x): %F A154602 R_n(x) = 2^n*Bell(n,(x+1)/2), where Bell(n,x) = Sum_{k = 0..n} Stirling2(n, k)*x^k denotes the n-th Bell polynomial. %F A154602 Recursion: %F A154602 R(n+1,x) = (x+1)*(R_n(x) + 2*d/dx(R_n(x))). %F A154602 (End) %F A154602 Recurrence: T(n,k) = 2*(k+1)*T(n-1,k+1) + (2*k+1)*T(n-1,k) + T(n-1,k-1). - _Emanuele Munarini_, Apr 14 2020 %F A154602 Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n). - _G. C. Greubel_, Sep 19 2024 %F A154602 E.g.f. of column k (with leading zeros): f(x)^k * exp(f(x)) / k! with f(x) = (exp(2*x) - 1)/2. - _Seiichi Manyama_, Apr 19 2025 %e A154602 Triangle begins %e A154602 1; %e A154602 1, 1; %e A154602 3, 4, 1; %e A154602 11, 19, 9, 1; %e A154602 49, 104, 70, 16, 1; %e A154602 257, 641, 550, 190, 25, 1; %e A154602 1539, 4380, 4531, 2080, 425, 36, 1; %e A154602 Production matrix of this array is %e A154602 1, 1, %e A154602 2, 3, 1, %e A154602 0, 4, 5, 1, %e A154602 0, 0, 6, 7, 1, %e A154602 0, 0, 0, 8, 9, 1, %e A154602 0, 0, 0, 0, 10, 11, 1 %e A154602 with generating function exp(t*x)*(1+t)*(1+2*x). %p A154602 A154602 := (n, k) -> add(2^(n-j) * binomial(j, k) * Stirling2(n, j), j = k..n): for n from 0 to 6 do seq(A154602(n, k), k = 0..n) od; # _Peter Luschny_, Dec 13 2022 %t A154602 (* The function RiordanArray is defined in A256893. *) %t A154602 RiordanArray[Exp[Sinh[#] Exp[#]]&, Sinh[#] Exp[#]&, 10, True] // Flatten (* _Jean-François Alcover_, Jul 19 2019 *) %o A154602 (Magma) %o A154602 A154602:= func< n,k | (&+[2^(n-j)*Binomial(j,k)*StirlingSecond(n,j): j in [k..n]]) >; %o A154602 [A154602(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 19 2024 %o A154602 (SageMath) %o A154602 def A154602(n,k): return sum(2^(n-j)*binomial(j,k)* stirling_number2(n,j) for j in range(k,n+1)) %o A154602 flatten([[A154602(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Sep 19 2024 %Y A154602 Columns k=0..3 give A000007, A383203, A383204, A383205. %Y A154602 Cf. A004211 (first column), A256893. %Y A154602 Sums include: A000007 (alternating sign row), A055882 (row sums). %K A154602 easy,nonn,tabl %O A154602 0,4 %A A154602 _Paul Barry_, Jan 12 2009