cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154608 Primes p such that 11*p + 4 is also prime.

This page as a plain text file.
%I A154608 #16 Sep 08 2022 08:45:40
%S A154608 3,5,17,23,47,53,59,89,107,137,173,179,239,263,269,317,347,383,389,
%T A154608 443,449,479,557,563,569,617,647,653,659,677,683,857,863,929,953,1019,
%U A154608 1097,1109,1193,1223,1229,1277,1373,1433,1487,1493,1499,1583,1607,1613,1667
%N A154608 Primes p such that 11*p + 4 is also prime.
%H A154608 Vincenzo Librandi, <a href="/A154608/b154608.txt">Table of n, a(n) for n = 1..1000</a>
%t A154608 Select[Prime[Range[2000]], PrimeQ[11 # + 4] &] (* _Vincenzo Librandi_, Mar 06 2013 *)
%o A154608 (Magma) [p: p in PrimesUpTo(1700)| IsPrime(11*p+4)]; // _Vincenzo Librandi_, Mar 06 2013
%o A154608 (PARI) for(n=1, 2000, if(isprime(n) && isprime(11*n+4), print1(n", "))) \\ _G. C. Greubel_, Sep 18 2019
%o A154608 (Sage) [n for n in (1..2000) if is_prime(n) and is_prime(11*n+4)] # _G. C. Greubel_, Sep 18 2019
%o A154608 (GAP) Filtered([1..2000], k-> IsPrime(k) and IsPrime(11*k+4)); # _G. C. Greubel_, Sep 18 2019
%Y A154608 Cf. A017437, A141851, A154607.
%K A154608 nonn,easy
%O A154608 1,1
%A A154608 _Vincenzo Librandi_, Jan 15 2009