This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154646 #6 Jul 23 2012 09:05:32 %S A154646 2,3,3,5,26,5,9,153,153,9,17,796,2262,796,17,33,3951,25176,25176,3951, %T A154646 33,65,19266,243111,524876,243111,19266,65,129,93477,2168235,8760639, %U A154646 8760639,2168235,93477,129,257,453848,18445820,127880936,235517318 %N A154646 Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1)* sum_{m=0..infinity} [(3*m+1)^n + (3*m+2)^n]*x^m in row n, column k. %C A154646 Row sums are 2, 6, 36, 324, 3888, 58320, 1049760, 22044960, 529079040, 14285134080, %C A154646 428554022400,... %e A154646 2; %e A154646 3, 3; %e A154646 5, 26, 5; %e A154646 9, 153, 153, 9; %e A154646 17, 796, 2262, 796, 17; %e A154646 33, 3951, 25176, 25176, 3951, 33; %e A154646 65, 19266, 243111, 524876, 243111, 19266, 65; %e A154646 129, 93477, 2168235, 8760639, 8760639, 2168235, 93477, 129; %e A154646 257, 453848, 18445820, 127880936, 235517318, 127880936, 18445820, 453848, 257; %p A154646 A154646 := proc(n,k) %p A154646 (-1)^(n+1)*(x-1)^(n+1)*add(x^j*((3*j+1)^n+(3*j+2)^n),j=0..k) ; %p A154646 coeftayl(%,x=0,k) ; %p A154646 end proc: # _R. J. Mathar_, Jul 23 2012 %t A154646 Clear[p]; p[x_, n_] = (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 2)^n*x^m, {m, 0, Infinity}] %t A154646 + (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 1)^n*x^m, {m, 0, Infinity}]; %t A154646 Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]; %t A154646 Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; %t A154646 Flatten[%] %t A154646 Contribution from _Roger L. Bagula_, Nov 27 2009: (Start) %t A154646 p[t_] = Exp[t]*x/((-Exp[3*t] + x)) + Exp[2*t]*x/((-Exp[3*t] + x)); %t A154646 a = Table[ CoefficientList[FullSimplify[ExpandAll[(n!*(-1 + x)^(n + 1)/x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]; %t A154646 Flatten[a] (End) %K A154646 nonn,tabl,easy %O A154646 0,1 %A A154646 _Roger L. Bagula_, Jan 13 2009