This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154691 #38 Apr 09 2025 14:14:33 %S A154691 1,3,7,13,23,39,65,107,175,285,463,751,1217,1971,3191,5165,8359,13527, %T A154691 21889,35419,57311,92733,150047,242783,392833,635619,1028455,1664077, %U A154691 2692535,4356615,7049153,11405771,18454927,29860701,48315631,78176335 %N A154691 Expansion of (1+x+x^2) / ((1-x)*(1-x-x^2)). %H A154691 Vincenzo Librandi, <a href="/A154691/b154691.txt">Table of n, a(n) for n = 0..1000</a> %H A154691 Tomislav Došlić and Biserka Kolarec, <a href="https://doi.org/10.3390/math13071179">On Log-Definite Tempered Combinatorial Sequences</a>, Mathematics (2025) Vol. 13, Iss. 7, 1179. %H A154691 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1). %F A154691 a(n+1) - a(n) = A006355(n+3) = A055389(n+3). %F A154691 a(n) = A066629(n-1) + A066629(n). %F A154691 a(n) = A006355(n+4) - 3 = A078642(n+1) - 3. %F A154691 a(n+1) = a(n) + 2*A000045(n+2). - _Reinhard Zumkeller_, Nov 17 2013 %F A154691 From _Colin Barker_, Feb 01 2017: (Start) %F A154691 a(n) = -3 + (2^(1-n)*((1-r)^n*(-2+r) + (1+r)^n*(2+r))) / r where r=sqrt(5). %F A154691 a(n) = 2*a(n-1) - a(n-3) for n>2. (End) %F A154691 a(n) = 2*Fibonacci(n+3) - 3. - _Greg Dresden_, Oct 10 2020 %F A154691 E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 2*sqrt(5)*sinh(sqrt(5)*x/2))/5 - 3*exp(x). - _Stefano Spezia_, Apr 09 2025 %p A154691 A154691 := proc(n) coeftayl( (1+x+x^2)/(1-x-x^2)/(1-x),x=0,n) ; end proc: %t A154691 Fibonacci[Range[3,60]]*2 -3 (* _Vladimir Joseph Stephan Orlovsky_, Mar 19 2010 *) %t A154691 CoefficientList[Series[(1 + x + x^2)/((1 - x - x^2)(1 - x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 18 2012 *) %o A154691 (Haskell) %o A154691 a154691 n = a154691_list !! n %o A154691 a154691_list = 1 : zipWith (+) %o A154691 a154691_list (drop 2 $ map (* 2) a000045_list) %o A154691 -- _Reinhard Zumkeller_, Nov 17 2013 %o A154691 (PARI) Vec((1+x+x^2) / ((1-x-x^2)*(1-x)) + O(x^60)) \\ _Colin Barker_, Feb 01 2017 %o A154691 (Magma) %o A154691 A154691:= func< n | 2*Fibonacci(n+3) - 3 >; %o A154691 [A154691(n): n in [0..40]]; // _G. C. Greubel_, Jan 18 2025 %o A154691 (Python) %o A154691 def A154691(n): return 2*fibonacci(n+3) - 3 %o A154691 print([A154691(n) for n in range(41)]) # _G. C. Greubel_, Jan 18 2025 %Y A154691 Cf. A000045, A001595, A006355, A055389, A066629, A078642, A166863. %K A154691 easy,nonn %O A154691 0,2 %A A154691 _R. J. Mathar_, Jan 14 2009