This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154696 #13 Jun 03 2023 06:21:05 %S A154696 2,5,5,13,72,13,35,690,690,35,97,5928,16560,5928,97,275,49770,302760, %T A154696 302760,49770,275,793,420204,4934124,10172736,4934124,420204,793,2315, %U A154696 3595350,76427820,280500840,280500840,76427820,3595350,2315 %N A154696 Triangular sequence defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n), where b(n) = coefficients of p(x, n) = 2^n*(1-x)^(n+1) * LerchPhi(x, -n, 1/2), and r=2, q=3. %H A154696 G. C. Greubel, <a href="/A154696/b154696.txt">Rows n = 0..40 of triangle, flattened</a> %H A154696 A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, <a href="http://dx.doi.org/10.1103/PhysRevA.34.2501">Use of combinatorial algebra for diffusion on fractals</a>, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3. %F A154696 Let r = 2 and q = 3 then b(n) = the coefficients of p(x, n) = 2^n*(1 - x)^(n + 1)* LerchPhi(x, -n, 1/2). The triangle is then defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n). %e A154696 Triangle begins as: %e A154696 2; %e A154696 5, 5; %e A154696 13, 72, 13; %e A154696 35, 690, 690, 35; %e A154696 97, 5928, 16560, 5928, 97; %e A154696 275, 49770, 302760, 302760, 49770, 275; %e A154696 793, 420204, 4934124, 10172736, 4934124, 420204, 793; %t A154696 r = 2; q = 3; p[x_, n_] = 2^n*(1-x)^(n+1)*LerchPhi[x, -n, 1/2]; %t A154696 b:= Table[CoefficientList[Series[p[x, n], {x, 0, 30}], x], {n, 0, 20}]; %t A154696 T[n_, m_]:= (r^(n-m)*q^m + r^m*q^(n-m))*b[[n+1]][[m+1]]; %t A154696 Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* modified by _G. C. Greubel_, May 08 2019 *) %K A154696 nonn,tabl,less %O A154696 0,1 %A A154696 _Roger L. Bagula_ and _Gary W. Adamson_, Jan 14 2009 %E A154696 Edited by _G. C. Greubel_, May 08 2019