A154720 Triangle read by rows in which row n lists 2n-1 terms: n, in the center of the row and all the pairs of noncomposite numbers equidistant to n, with 0's inserted, as shown below in the example.
1, 1, 2, 3, 1, 0, 3, 0, 5, 1, 0, 3, 4, 5, 0, 7, 0, 0, 3, 0, 5, 0, 7, 0, 0, 1, 0, 0, 0, 5, 6, 7, 0, 0, 0, 11, 1, 0, 3, 0, 0, 0, 7, 0, 0, 0, 11, 0, 13, 0, 0, 3, 0, 5, 0, 0, 8, 0, 0, 11, 0, 13, 0, 0, 1, 0, 0, 0, 5, 0, 7, 0, 9, 0, 11, 0, 13, 0, 0, 0, 17
Offset: 1
Examples
Triangle begins: 1 1 2 3 1 0 3 0 5 1 0 3 4 5 0 7 0 0 3 0 5 0 7 0 0 1 0 0 0 5 6 7 0 0 0 11 1 0 3 0 0 0 7 0 0 0 11 0 13 0 0 3 0 5 0 0 8 0 0 11 0 13 0 0 1 0 0 0 5 0 7 0 9 0 11 0 13 0 0 0 17 1 0 3 0 0 0 7 0 0 10 0 0 13 0 0 0 17 0 19
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isnotcomp:=proc(n)return (n=1 or isprime(n)) end: for n from 1 to 10 do for k from 1 to 2*n-1 do if(k=n or (isnotcomp(k) and isnotcomp(2*n-k)))then print(k):else print(0):fi:od:od: # Nathaniel Johnston, Apr 18 2011
-
Mathematica
Flatten@Table[If[k == n || ( !CompositeQ[k] && !CompositeQ[2 n - k]), k, 0], {n, 10}, {k, 2 n - 1}] (* Robert Price, Apr 26 2025 *)