This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154732 #18 Jan 07 2025 16:32:33 %S A154732 2,5,9,11,12,26,44,47,62,69,71,89,125,140,147,179,219,254,264,285,294, %T A154732 312,317,326,341,344,384,407,461,495,659,680,714,740,837,845,861,866, %U A154732 867,957,989,1071,1079,1152,1215,1310,1437,1481,1499,1511,1530,1577 %N A154732 Integers k such that (k^3 + k^2) -+ 1 are primes. %H A154732 Robert Israel, <a href="/A154732/b154732.txt">Table of n, a(n) for n = 1..10000</a> %e A154732 2^3 + 2^2 = 12 -+ 1 = 11 and 13 (both prime). %p A154732 select(k -> andmap(isprime,[k^3+k^2-1,k^3+k^2+1]), [$1..10000]); # _Robert Israel_, Jan 07 2025 %t A154732 lst={};Do[k=n^3+n^2;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,n]],{n,8!}];lst %t A154732 Select[Range[3000], PrimeQ[#^3 + #^2 - 1] && PrimeQ[#^3 + #^2 + 1] &] (* _Vincenzo Librandi_, Dec 26 2015 *) %o A154732 (Magma) [n: n in [1..5*10^3] |IsPrime(n^3+n^2-1) and IsPrime(n^3+n^2+1)]; // _Vincenzo Librandi_, Dec 26 2015 %o A154732 (PARI) isok(n) = isprime(n^3+n^2+1) && isprime(n^3+n^2-1); \\ _Michel Marcus_, Dec 27 2015 %Y A154732 Cf. A111503, A154731. %K A154732 nonn,easy %O A154732 1,1 %A A154732 _Vladimir Joseph Stephan Orlovsky_, Jan 14 2009