cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154740 Continued fraction for sqrt(1 - 1/sqrt(2)), the abscissa of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.

This page as a plain text file.
%I A154740 #12 Sep 08 2022 08:45:40
%S A154740 0,1,1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,6,1,8,74,2,1,2,4,2,4,3,
%T A154740 5,9,4,3,1,1,1,2,1,17,6,1,2,12,1,1,1,2,1,24,1,2,1,2,9,989,2,13,1,5,1,
%U A154740 1,1,64,2,2,1,1,9,1,3,1,1,1,2,3,11,2,3,1
%N A154740 Continued fraction for sqrt(1 - 1/sqrt(2)), the abscissa of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.
%H A154740 G. C. Greubel, <a href="/A154740/b154740.txt">Table of n, a(n) for n = 0..10000</a>
%e A154740 Sqrt(1 - 1/sqrt(2)) = 0.541196100146196984399723205366... = [0; 1, 1, 5, 1, 1, 3, 6, 1, 3, 3, 10, 10, ...].
%t A154740 nmax = 1000; ContinuedFraction[ Sqrt[ 1 - 1/Sqrt[2] ], nmax + 1]
%o A154740 (PARI) contfrac(sqrt(1 - 1/sqrt(2))) \\ _Michel Marcus_, Dec 09 2016
%o A154740 (Magma) ContinuedFraction(Sqrt(1 - 1/Sqrt(2))); // _G. C. Greubel_, Jan 27 2018
%Y A154740 Cf. A154739, A154741 and A154742 for the decimal expansion and the numerators and denominators of the convergents.
%K A154740 nonn,cofr,easy
%O A154740 0,4
%A A154740 _Stuart Clary_, Jan 14 2009