This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154795 #15 Aug 31 2015 10:31:21 %S A154795 1,3,7,15,101,297,1255,4565,10143,14883,21637,31185,44583,63261, %T A154795 173525,239943,329931,1121505,1505499,2679689,3554345,4697205,6185689, %U A154795 10619863,18004327,23338469,30167357,38887673,49995925,64112359,82010177 %N A154795 Odd partition numbers of odd numbers. %C A154795 Odd numbers in A058695. %H A154795 Alois P. Heinz, <a href="/A154795/b154795.txt">Table of n, a(n) for n = 1..1000</a> %e A154795 7 is in the sequence because the odd number 5 has partition number 7 (5,41,32,311,2221,22111,1111111). - _Emeric Deutsch_, Aug 02 2009 %p A154795 aa:= proc(n, i) if n=0 then 1 elif n<0 or i=0 then 0 else aa(n,i):= aa(n, i-1) +aa(n-i, i) fi end: a:= proc(n) local k; if n>1 then a(n-1) fi; for k from `if`(n=1, 1, b(n-1)+2) by 2 while irem(aa(k, k), 2)=0 do od; b(n):= k; aa(k, k) end: seq(a(n), n=1..40); # _Alois P. Heinz_, Jul 28 2009 %p A154795 with(combinat): a := proc (n) if `mod`(numbpart(2*n-1), 2) = 1 then numbpart(2*n-1) else end if end proc: seq(a(n), n = 1 .. 50); # _Emeric Deutsch_, Aug 02 2009 %t A154795 Reap[Do[If[OddQ[p = PartitionsP[n]], Sow[p]], {n, 1, 99, 2}]][[2, 1]] (* _Jean-François Alcover_, Aug 31 2015 *) %Y A154795 Cf. A000041, A005408, A058695, A154796, A154797, A154798. %K A154795 nonn %O A154795 1,2 %A A154795 _Omar E. Pol_, Jan 26 2009 %E A154795 More terms from _Alois P. Heinz_, Jul 28 2009