This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154920 #23 Feb 26 2022 04:24:57 %S A154920 1,18,27,324,405,4374,5103,52488,59049,590490,649539,6377292,6908733, %T A154920 66961566,71744535,688747536,731794257,6973568802,7360989291, %U A154920 69735688020,73222472421,690383311398,721764371007,6778308875544 %N A154920 Denominators of a ternary BBP-type formula for log(3). %C A154920 log(3) = Sum_{k>=0} (9/(2k+1)+1/(2k+2))/9^(k+1). %C A154920 log(3) = 1 + Sum_{k>=0} (1/(2k+2)+1/(2k+3))/9^(k+1). %H A154920 David H. Bailey, <a href="https://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf">A Compendium of BBP-Type Formulas for Mathematical Constants</a>, 2017, page 14. [From _Jaume Oliver Lafont_, Sep 25 2009] %H A154920 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,18,0,-81). %F A154920 a(n) = (n+1)*9^[(n+1)/2] = 18*a(n-2) - 81*a(n-4). %F A154920 Sum_{n>=0} 1/a(n) = log(3). %F A154920 G.f.: (1+18*x+9*x^2)/(1-9*x^2)^2. - _Jaume Oliver Lafont_, Jan 29 2009 %F A154920 a(n) = (2-(-1)^n)*(n+1)*3^n. - _Jaume Oliver Lafont_, Sep 27 2009 %F A154920 Sum_{n>=0} (-1)^n/a(n) = log(8/3). - _Amiram Eldar_, Feb 26 2022 %t A154920 LinearRecurrence[{0,18,0,-81},{1,18,27,324},30] (* _Harvey P. Dale_, Jan 10 2017 *) %o A154920 (PARI) a(n)=(n+1)*9^((n+1)\2) \\ _Jaume Oliver Lafont_, Mar 25 2009 %o A154920 (Magma) [(2-(-1)^n)*(n+1)*3^n: n in [0..30]]; // _Vincenzo Librandi_, Jul 06 2015 %Y A154920 Cf. A002391, A058962. %Y A154920 Cf. A164985, A165132. - _Jaume Oliver Lafont_, Sep 25 2009 %K A154920 nonn %O A154920 0,2 %A A154920 _Jaume Oliver Lafont_, Jan 17 2009, Jan 18 2009