This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154929 #17 Jan 26 2020 20:56:51 %S A154929 1,2,1,3,4,1,5,10,6,1,8,22,21,8,1,13,45,59,36,10,1,21,88,147,124,55, %T A154929 12,1,34,167,339,366,225,78,14,1,55,310,741,976,770,370,105,16,1,89, %U A154929 566,1557,2422,2337,1443,567,136,18,1,144,1020,3174,5696,6505,4920,2485 %N A154929 A Fibonacci convolution triangle. %C A154929 Row sums are A028859. Diagonal sums are A141015(n+1). Inverse is A154930. Product of A030528 and A007318. %C A154929 Transforms sequence m^n with g.f. 1/(1-m*x) to the sequence with g.f. (1+x)/(1-(m+1)x-(m+1)x^2). %C A154929 Subtriangle of triangle T(n,k), given by (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. This triangle is the Riordan array (1, x(1+x)/(1-x-x^2)). - _Philippe Deléham_, Jan 25 2012 %H A154929 Michael De Vlieger, <a href="/A154929/b154929.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150) %H A154929 Milan Janjić, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Janjic/janjic93.html">Words and Linear Recurrences</a>, J. Int. Seq. 21 (2018), #18.1.4. %F A154929 Riordan array ((1+x)/(1-x-x^2), x(1+x)/(1-x-x^2)); %F A154929 Triangle T(n,k) = Sum_{j=0..n} C(j+1,n-j)*C(j,k). %F A154929 T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(n,k)=0 if k > n. - _Philippe Deléham_, Jan 18 2009 %F A154929 Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A028859(n), A125145(n), A086347(n+1) for x=0,1,2,3 respectively. - _Philippe Deléham_, Jan 19 2009 %e A154929 Triangle begins %e A154929 1; %e A154929 2, 1; %e A154929 3, 4, 1; %e A154929 5, 10, 6, 1; %e A154929 8, 22, 21, 8, 1; %e A154929 13, 45, 59, 36, 10, 1; %e A154929 21, 88, 147, 124, 55, 12, 1; %e A154929 34, 167, 339, 366, 225, 78, 14, 1; %e A154929 55, 310, 741, 976, 770, 370, 105, 16, 1; %e A154929 Production array is %e A154929 2, 1; %e A154929 -1, 2, 1; %e A154929 3, -1, 2, 1; %e A154929 -10, 3, -1, 2, 1; %e A154929 36, -10, 3, -1, 2, 1; %e A154929 -137, 36, -10, 3, -1, 2, 1; %e A154929 543, -137, 36, -10, 3, -1, 2, 1; %e A154929 or ((1+x+sqrt(1+6x+5x^2))/2,x) beheaded. %e A154929 T(5,3) = T(4,3) + T(4,2) + T(3,3) + T(3,2) = 8 + 21 + 1 + 6 = 36. - _Philippe Deléham_, Jan 18 2009 %e A154929 From _Philippe Deléham_, Jan 25 2012: (Start) %e A154929 Triangle (0,2,-1/2,-1/2,0,0,0,...) DELTA (1,0,0,0,0,0,...) begins: %e A154929 1; %e A154929 0, 1; %e A154929 0, 2, 1; %e A154929 0, 3, 4, 1; %e A154929 0, 5, 10, 6, 1; %e A154929 0, 8, 22, 21, 8, 1; %e A154929 0, 13, 45, 59, 36, 10, 1; %e A154929 0, 21, 88, 147, 124, 55, 12, 1; (End) %t A154929 Table[Sum[Binomial[j + 1, n - j] Binomial[j, k], {j, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 25 2018 *) %K A154929 easy,nonn,tabl %O A154929 0,2 %A A154929 _Paul Barry_, Jan 17 2009