This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154951 #10 Mar 07 2020 04:09:57 %S A154951 0,1,1,2,3,4,4,5,6,6,7,8,9,9,10,10,11,12,13,13,14,15,15,16,16,17,18, %T A154951 19,19,20,21,22,22,23,24,24,25,25,26,27,28,28,29,29,30,31,32,32,33,34, %U A154951 35,35,36,37,37,38,38,39,40,41,41,42,43,43,44,44,45,46,47,47 %N A154951 Found by taking the tree defined by the Hofstadter H-sequence (A005374), mirroring it left to right and relabeling the nodes so they increase left to right. a(n) is the parent node of node n in the tree so constructed. %D A154951 D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1999, p. 137. %H A154951 David Fifield <a href="/A154951/b154951.txt">Table of n, a(n) for n = 0..10000</a> %o A154951 (Python) # Emulate a breadth-first traversal of the "flip" %o A154951 # of the tree defined by the Hofstadter H-sequence. %o A154951 def hflip_iter(): %o A154951 yield 0 %o A154951 yield 1 %o A154951 # Start on the first node of a left branch, parent node is 1. %o A154951 queue = [(1, 1)] %o A154951 n = 2 %o A154951 while True: %o A154951 parent, state = queue.pop(0) %o A154951 yield parent %o A154951 if state == 0: %o A154951 # Root node. Add the two children. %o A154951 queue.append((n, 1)) %o A154951 queue.append((n, 0)) %o A154951 elif state == 1: %o A154951 # First node on left branch. Add the second node. %o A154951 queue.append((n, 2)) %o A154951 elif state == 2: %o A154951 # Second node on left branch. Add a new root. %o A154951 queue.append((n, 0)) %o A154951 n += 1 %o A154951 i = hflip_iter() %o A154951 for n in range(0, 10001): %o A154951 print("%d %d" % (n, next(i))) %Y A154951 Cf. A005374, A123070. %K A154951 nonn %O A154951 0,4 %A A154951 _David Fifield_, Jan 17 2009