cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154964 a(n) = 3*a(n-1) + 6*a(n-2), n>2, a(0)=1, a(1)=1, a(2)=5.

Original entry on oeis.org

1, 1, 5, 21, 93, 405, 1773, 7749, 33885, 148149, 647757, 2832165, 12383037, 54142101, 236724525, 1035026181, 4525425693, 19786434165, 86511856653, 378254174949, 1653833664765, 7231026043989, 31616080120557, 138234396625605, 604399670600157, 2642605391554101
Offset: 0

Views

Author

Philippe Deléham, Jan 18 2009

Keywords

Comments

For n>=1, a(n) is the number of words of length n-1 over the alphabet {1,2,3,4,5} such that no two even numbers appear consecutively. - Armend Shabani, Mar 01 2017

Programs

  • Mathematica
    {1}~Join~LinearRecurrence[{3, 6}, {1, 5}, 25] (* or *)
    CoefficientList[Series[(1 - 2 x - 4 x^2)/(1 - 3 x - 6 x^2), {x, 0, 25}], x] (* Michael De Vlieger, Mar 02 2017 *)
  • PARI
    Vec((1-2*x-4*x^2)/(1-3*x-6*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2012

Formula

G.f.: (1 - 2*x - 4*x^2)/(1 - 3*x - 6*x^2).
a(n+1) = Sum_{k=0..n} A154929(n,k)*2^(n-k).
G.f.: Q(0)/6 +2/3 , where Q(k) = 1 + 1/(1 - x*(6*k+3 + 6*x )/( x*(6*k+6 + 6*x ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013
a(n) = A083858(n+1)/3, n>=1. - R. J. Mathar, Feb 06 2020