This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154987 #19 May 28 2020 03:04:40 %S A154987 -2,4,4,13,20,13,41,69,69,41,183,268,264,268,183,1099,1405,1080,1080, %T A154987 1405,1099,7943,9486,5970,4080,5970,9486,7943,65547,75775,43806,20370, %U A154987 20370,43806,75775,65547,604831,685672,384552,149520,77280,149520,384552,685672,604831 %N A154987 Triangle read by rows: T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*(n!/k!)*(2*(n + k) - 1). %H A154987 G. C. Greubel, <a href="/A154987/b154987.txt">Rows n = 0..100 of the triangle, flattened</a> %F A154987 T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*n!*Gamma(n + k + 1/2)/(k!*Gamma(n + k - 1/2)). %F A154987 T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*(n+k-1/2)*(n!/k!). - _Yu-Sheng Chang_, Apr 13 2020 %F A154987 From _G. C. Greubel_, May 28 2020: (Start) %F A154987 T(n,k) = binomial(n,k)*( (2*n+2*k-1)*(n-k)! + (4*n-2*k-1)*k! ). %F A154987 T(n,n-k) = T(n,k), for k >= 0. %F A154987 Sum_{k=0..n} T(n,k) = 2*( 2*n-1 + (2*n+1)*n!*e_{n-1}(1) ), where e_{n}(x) is the finite exponential function = Sum_{k=0..n} x^k/k!. %F A154987 Sum_{k=0..n} T(n,k) = 2*( 2*n-1 + (2*n+1)*A007526(n) ). %F A154987 T(n,0) = A175925(n-1) + 2*n. %F A154987 T(n,1) = A007680(n) + A001107(n). (End) %e A154987 -2; %e A154987 4, 4; %e A154987 13, 20, 13; %e A154987 41, 69, 69, 41; %e A154987 183, 268, 264, 268, 183; %e A154987 1099, 1405, 1080, 1080, 1405, 1099; %e A154987 7943, 9486, 5970, 4080, 5970, 9486, 7943; %e A154987 65547, 75775, 43806, 20370, 20370, 43806, 75775, 65547; %e A154987 ... %p A154987 t:= proc(n,k) option remember; ## simplified t; %p A154987 2*(n+k-1/2)*(n!/k!); %p A154987 end proc: %p A154987 A154987:= proc(n,k) ## n >= 0 and k = 0 .. n %p A154987 t(n,k) + t(n,n-k) %p A154987 end proc: # _Yu-Sheng Chang_, Apr 13 2020 %t A154987 (* First program *) %t A154987 t[n_, k_]:= 2*n!*Gamma[n+k+1/2]/(k!*Gamma[n+k-1/2]); %t A154987 T[n_, k_]:= t[n, k] + t[n,n-k]; %t A154987 Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten %t A154987 (* Second Program *) %t A154987 T[n_, k_]:= Binomial[n, k]*((n-k)!*(2*n+2*k-1) + k!*(4*n-2*k-1)); %t A154987 Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 28 2020 *) %o A154987 (Sage) %o A154987 def T(n, k): return binomial(n, k)*(factorial(n-k)*(2*n+2*k-1) + factorial(k)*(4*n-2*k-1)) %o A154987 [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, May 28 2020 %K A154987 sign,tabl %O A154987 0,1 %A A154987 _Roger L. Bagula_, Jan 18 2009 %E A154987 Partially edited by _Andrew Howroyd_, Mar 26 2020 %E A154987 Additionally edited by _G. C. Greubel_, May 28 2020