This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A154990 #19 Mar 07 2021 03:05:44 %S A154990 1,-1,1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1, %T A154990 -1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1, %U A154990 -1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1 %N A154990 Triangle read by rows. Main diagonal is positive. The rest of the terms are negative. %C A154990 Triangle can be used in matrix inverses. Signs in columns as in A153881. %C A154990 Iff n is a triangular number, a(n)=1; otherwise, a(n)=-1. (This is explicitly implemented in the second Mathematica program below.) - _Harvey P. Dale_, Apr 27 2014 %H A154990 G. C. Greubel, <a href="/A154990/b154990.txt">Rows n = 1..30 of the triangle, flattened</a> %F A154990 From _G. C. Greubel_, Mar 06 2021: (Start) %F A154990 T(n, k) = -1 with T(n, n) = 1. %F A154990 Sum_{k=1..n} T(n, k) = 2-n = -A023443(n-1) = -A023444(n). (End) %e A154990 Table begins: %e A154990 1; %e A154990 -1, 1; %e A154990 -1, -1, 1; %e A154990 -1, -1, -1, 1; %e A154990 -1, -1, -1, -1, 1; %e A154990 -1, -1, -1, -1, -1, 1; %e A154990 -1, -1, -1, -1, -1, -1, 1; %p A154990 A154990 := proc(n,k) %p A154990 option remember; %p A154990 if k = n then %p A154990 1; %p A154990 elif k > n then %p A154990 0; %p A154990 else %p A154990 -1 ; %p A154990 end if; %p A154990 end proc: %p A154990 seq(seq(A154990(n,k),k=1..n),n=1..12) ; # _R. J. Mathar_, Sep 16 2017 %t A154990 Flatten[Table[PadLeft[{1},n,-1],{n,15}]] (* or *) With[{tr=Accumulate[ Range[ 15]]}, Table[If[MemberQ[tr,n],1,-1],{n,Last[tr]}]] (* _Harvey P. Dale_, Apr 27 2014 *) %o A154990 (Sage) flatten([[1 if k==n else -1 for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 06 2021 %o A154990 (Magma) [k eq n select 1 else -1: k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 06 2021 %Y A154990 Cf. A023443, A023444. %K A154990 sign,easy,tabl %O A154990 1,1 %A A154990 _Mats Granvik_, Jan 18 2009