This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155000 #25 Dec 31 2023 11:36:15 %S A155000 1,1,15,176,2248,27840,348608,4347904,54305280,677924864,8464494592, %T A155000 105679749120,1319449690112,16473663471616,205678490419200, %U A155000 2567953077764096,32061620085587968,400298333039493120 %N A155000 a(n) = 8*a(n-1) + 56*a(n-2), n > 2; a(0)=1, a(1)=1, a(2)=15. %C A155000 The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - _R. J. Mathar_, Jan 20 2009 %H A155000 G. C. Greubel, <a href="/A155000/b155000.txt">Table of n, a(n) for n = 0..900</a> %H A155000 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,56). %F A155000 a(n) = Sum_{k=0..n} A155112(n,k)*7^(n-k). - _Philippe Deléham_, Jan 27 2009 %F A155000 G.f.: 1 + x*(1+7*x)/(1-8*x-56*x^2). - _Harvey P. Dale_, Dec 11 2012 %p A155000 m:=30; S:=series( (1-7*x-49*x^2)/(1-8*x-56*x^2), x, m+1): %p A155000 seq(coeff(S, x, j), j=0..m); # _G. C. Greubel_, Apr 20 2021 %t A155000 Join[{1},LinearRecurrence[{8,56},{1,15},20]] (* _Harvey P. Dale_, Dec 11 2012 *) %o A155000 (Magma) I:=[1,15]; [1] cat [n le 2 select I[n] else 8*(Self(n-1) +7*Self(n-2)): n in [1..30]]; // _G. C. Greubel_, Apr 20 2021 %o A155000 (Sage) %o A155000 def A155000_list(prec): %o A155000 P.<x> = PowerSeriesRing(ZZ, prec) %o A155000 return P( (1-7*x-49*x^2)/(1-8*x-56*x^2) ).list() %o A155000 A155000_list(30) # _G. C. Greubel_, Apr 20 2021 %Y A155000 Cf. A154996, A154997, A154999, A155001, A155112. %K A155000 nonn %O A155000 0,3 %A A155000 _Philippe Deléham_, Jan 18 2009 %E A155000 More terms from _Philippe Deléham_, Jan 27 2009