cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155002 Triangle read by rows, A104762 * (A000129 * 0^(n-k)).

This page as a plain text file.
%I A155002 #11 May 09 2021 10:03:10
%S A155002 1,1,1,2,1,2,3,2,2,5,5,3,4,5,12,8,5,6,10,12,29,13,8,10,15,24,29,70,21,
%T A155002 13,16,25,36,58,70,169,34,21,26,40,60,87,140,169,408,55,34,42,65,96,
%U A155002 145,210,338,408,985
%N A155002 Triangle read by rows, A104762 * (A000129 * 0^(n-k)).
%C A155002 Eigentriangle, row sums = rightmost term of next row.
%C A155002 Row sums = the Pell series starting with offset 1: (1, 2, 5, 12, 29, ...).
%H A155002 M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002. [Link to arXiv version]
%H A155002 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%F A155002 Triangle read by rows, A104762 * (A000129 * 0^(n-k)).
%F A155002 A104762 = Fibonacci numbers "decrescendo", (1, 1, 2, 3, 5, ...) in every column.
%F A155002 (A000129 * 0^(n-k)) ) = the Pell series prefaced with a 1:
%F A155002 (1, 1, 2, 5, 12, ...) as the main diagonal and the rest zeros
%F A155002 From _Wolfdieter Lang_, Apr 13 2021: (Start)
%F A155002 T(n, m) = F(n+1-m)*A215928(m), with F = A000045, for n >= m >= 1, and 0 otherwise.
%F A155002 The lower triangular (infinite) matrix t with elements t(n, m) = T(n+1, m+1), for n >= m >= 0, and 0 otherwise, has row polynomials R(n, x) = Sum_{m=0..n} t(n, m)*x^m with o.g.f. G(z, x) = A(z)/(1 - x*z*A(x*z)) =
%F A155002 (1 - x*z - (x*z)^2)/((1 - z - z^2)*(1 - 2*x*z - (x*z)^2)), with the o.g.f. A(x) of (F_{n+1})_{n>=0}, where F = A000045.
%F A155002 The infinite dimensional lower triangular Riordan matrix TB := (1/(1 - x - x^2), x) (a Toeplitz matrix) with nonzero elements A104762(n+1, m+1) has sequence (A215928(m))_{m >=0} as 'L-eigen-sequence' (cf. the Bernstein-Sloane link for 'eigen-sequence'). This means that (TB - L)*vec(B) = 0-matrix, where L has elements L(i, j) = delta_{i, j-1} (first upper diagonal with 1s, otherwise 0), and the infinite vector vec(B) has the elements of A215928.
%F A155002 Thanks to _Gary W. Adamson_ for motivating me to look at such triangles and sequences. (End)
%e A155002 First ten rows of the triangle T(n, m):
%e A155002 n \ m   1  2  3  4  5   6   7   8   9  10 ...
%e A155002 1:      1
%e A155002 2:      1  1
%e A155002 3:      2  1  2
%e A155002 4:      3  2  2  5
%e A155002 5:      5  3  4  5 12
%e A155002 6:      8  5  6 10 12  29
%e A155002 7:     13  8 10 15 24  29  70
%e A155002 8:     21 13 16 25 36  58  70 169
%e A155002 9:     34 21 26 40 60  87 140 169 408
%e A155002 10:    55 34 42 65 96 145 210 338 408 985
%e A155002 ... reformatted by - _Wolfdieter Lang_, Apr 13 2021
%e A155002 Row 4 = (3, 2, 2, 5) = termwise products of (3, 2, 1, 1) and (1, 1, 2, 5).
%Y A155002 Cf. A104762, A000045, A000129, A215928.
%K A155002 eigen,nonn,easy,tabl
%O A155002 1,4
%A A155002 _Gary W. Adamson_ & _Roger L. Bagula_, Jan 18 2009