cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155005 Smallest number having exactly n divisors that are contained in its decimal representation.

This page as a plain text file.
%I A155005 #7 Feb 04 2025 15:55:21
%S A155005 1,10,12,110,120,1020,1200,1248,10250,11250,12480,31248,132600,124800,
%T A155005 112500,312480,1248000,1312500,1125000,3124800,14437500,16250000,
%U A155005 11250000,31248000,103125000,144375000,112500000,131250000
%N A155005 Smallest number having exactly n divisors that are contained in its decimal representation.
%C A155005 A121041(a(n)) = n and A121041(m) < n for m < a(n).
%C A155005 Conjecture: a(5+5n)=1125*10^n for n>0. [_Robert G. Wilson v_, Jan 23 2009]
%e A155005 a(4) = 110, A121041(110) = #{1, 10, 11, 110} = 4;
%e A155005 a(5) = 120, A121041(120) = #{1, 2, 12, 20, 120} = 5;
%e A155005 a(6) = 1020, A121041(1020) = #{1, 2, 10, 20, 102, 1020} = 6.
%t A155005 f[n_] := Block[{d = Divisors@ n, len = DivisorSigma[0, n], i = 1, c = 1, s = ToString@ n}, While[i < len, If[ StringMatchQ[s, "*" <> ToString[d[[i]]] <> "*"], c++ ] ; i++ ]; c]; t = Table[0, {30}]; Do[ a = f[n]; If[ t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 2*10^8}] (* _Robert G. Wilson v_, Jan 23 2009 *)
%t A155005 dcdr[n_]:=Count[Divisors[n],_?(SequenceCount[IntegerDigits[n],IntegerDigits[#]]>0&)]; DeleteDuplicates[Table[{n,dcdr[n]},{n,1313*10^5}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* _Harvey P. Dale_, Feb 04 2025 *)
%K A155005 base,nonn
%O A155005 1,2
%A A155005 _Reinhard Zumkeller_, Jan 18 2009
%E A155005 a(17)-a(28) from _Robert G. Wilson v_, Jan 23 2009