This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155075 #22 Sep 25 2015 16:17:39 %S A155075 11,101,113,131,151,181,191,199,211,223,227,229,233,277,311,313,331, %T A155075 337,353,373,383,433,443,449,499,557,577,599,661,677,727,733,757,773, %U A155075 787,797,811,877,881,883,887,911,919,929,977,991,997,1009,1013,1019,1021 %N A155075 Primes with one digit used exactly twice, all others digits distinct. %C A155075 The sequence is finite. The last 10 terms are 98876342501, 98876405231, 98876421053, 98876502143, 98876504123, 98876520143, 98876524013, 98876524301, 98876530421, 98876532401. - _Zak Seidov_, Dec 18 2014 %C A155075 Number of n-digits terms starting with n=1: {0, 1, 46, 508, 4117, 31395, 187533, 854665, 2989094, 7172381, 6481542}. - _Zak Seidov_, Jun 04 2015 %H A155075 Robert Israel, <a href="/A155075/b155075.txt">Table of n, a(n) for n = 1..10000</a> %p A155075 G:= proc(d) # to produce all d-digit terms %p A155075 local L, C, Cc, P, i, x, res; %p A155075 res:= NULL; %p A155075 L:= [false, true, false, true, false, false, false, true, false, true]; %p A155075 for C in combinat:-choose([$0..9], d-1) do %p A155075 for i from 1 to d-1 do %p A155075 Cc:= [op(C), C[i]]; %p A155075 if convert(Cc, `+`) mod 3 = 0 then next fi; %p A155075 for P in combinat:-permute(Cc) do %p A155075 if P[-1] = 0 or not L[P[1]+1] then next fi; %p A155075 x:= add(P[i]*10^(i-1), i=1..nops(P)); %p A155075 if isprime(x) then res:= res, x fi; %p A155075 od %p A155075 od %p A155075 od; %p A155075 sort([res]); %p A155075 end proc: %p A155075 seq(op(G(d)), d=1..5); # _Robert Israel_, Jun 04 2015 %t A155075 fQ[n_]:=Length[IntegerDigits[n]]-Length[Union[IntegerDigits[n]]]==1;Select[Prime@Range[21713],fQ[#]&] (* _Ivan N. Ianakiev_, Sep 25 2015 *) %o A155075 (PARI) lista(nn) = {forprime(p=2, nn, my(d = digits(p)); if (#vecsort(d,,8) == #d-1, print1(p, ", ")););} \\ _Michel Marcus_, Dec 18 2014 %Y A155075 Cf. A000040, A073064. %K A155075 nonn,fini,base %O A155075 1,1 %A A155075 _Juri-Stepan Gerasimov_, Jan 19 2009 %E A155075 Definition clarified by _R. J. Mathar_, May 05 2010