cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155156 Triangle T(n, k) = 4*n*k + 2*n + 2*k, read by rows.

This page as a plain text file.
%I A155156 #17 Sep 08 2022 08:45:40
%S A155156 8,14,24,20,34,48,26,44,62,80,32,54,76,98,120,38,64,90,116,142,168,44,
%T A155156 74,104,134,164,194,224,50,84,118,152,186,220,254,288,56,94,132,170,
%U A155156 208,246,284,322,360,62,104,146,188,230,272,314,356,398,440,68,114,160,206,252,298,344,390,436,482,528
%N A155156 Triangle T(n, k) = 4*n*k + 2*n + 2*k, read by rows.
%C A155156 First column: A016933, second column: A017317, third column: A063151, fourth column: 2*A017209. - _Vincenzo Librandi_, Nov 21 2012
%H A155156 Vincenzo Librandi, <a href="/A155156/b155156.txt">Rows n = 1..100, flattened</a>
%F A155156 T(n, k) = 2*A083487(n, k). - _R. J. Mathar_, Jan 05 2011
%F A155156 Sum_{k=0..n} T(n,k) = n*(2*n^2 + 5*n + 1) = 2*A162254(n) = A163832(n). - _G. C. Greubel_, Mar 20 2021
%e A155156 Triangle begins:
%e A155156    8;
%e A155156   14,  24;
%e A155156   20,  34,  48;
%e A155156   26,  44,  62,  80;
%e A155156   32,  54,  76,  98, 120;
%e A155156   38,  64,  90, 116, 142, 168;
%e A155156   44,  74, 104, 134, 164, 194, 224;
%e A155156   50,  84, 118, 152, 186, 220, 254, 288;
%e A155156   56,  94, 132, 170, 208, 246, 284, 322, 360;
%e A155156   62, 104, 146, 188, 230, 272, 314, 356, 398, 440;
%p A155156 seq(seq( 2*(2*n*k +n+k), k=1..n), n=1..15); # _G. C. Greubel_, Mar 20 2021
%t A155156 T[n_,k_]:=4*n*k +2*n +2*k; Table[T[n, k], {n, 15}, {k, n}]//Flatten (* _Vincenzo Librandi_, Nov 21 2012 *)
%o A155156 (Magma) [4*n*k + 2*n + 2*k : k in [1..n], n in [1..11]]; // _Vincenzo Librandi_, Nov 21 2012
%o A155156 (Sage) flatten([[2*(2*n*k +n+k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 20 2021
%Y A155156 Cf. A016933, A017317, A063151, A017209. A083487, A162254, A163832 (row sums).
%K A155156 nonn,tabl,easy
%O A155156 1,1
%A A155156 _Vincenzo Librandi_, Jan 21 2009
%E A155156 Edited by _Robert Hochberg_, Jun 21 2010