This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155207 #8 Jun 15 2025 04:17:30 %S A155207 1,4,136,87904,1074100576,225184288253824,787061981348092400896, %T A155207 45273238870711805132010916864,42535296046210357883346895894694749696, %U A155207 649556283428320264374891976653586736162144180224 %N A155207 G.f.: A(x) = exp( Sum_{n>=1} 4^(n^2) * x^n/n ), a power series in x with integer coefficients. %C A155207 More generally, for m integer, exp( Sum_{n>=1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients. %F A155207 G.f. satisfies: A'(x)/A(x) = 4 + 64*x*A'(16*x)/A(16*x). - _Paul D. Hanna_, Nov 15 2022 %F A155207 a(n) ~ 4^(n^2)/n. - _Vaclav Kotesovec_, Oct 31 2024 %e A155207 G.f.: A(x) = 1 + 4*x + 136*x^2 + 87904*x^3 + 1074100576*x^4 +... %e A155207 log(A(x)) = 4*x + 4^4*x^2/2 + 4^9*x^3/3 + 4^16*x^4/4 + 4^25*x^5/5 +... %o A155207 (PARI) {a(n)=polcoeff(exp(sum(m=1,n+1,4^(m^2)*x^m/m)+x*O(x^n)),n)} %Y A155207 Cf. A060757, A155208, A155209, A155210, variants: A155200, A155203. %K A155207 nonn %O A155207 0,2 %A A155207 _Paul D. Hanna_, Feb 04 2009