A155457 a(n) = exp(Lambda(n)), where Lambda(n) is the von Mangoldt function for odd (!) primes.
1, 1, 3, 1, 5, 1, 7, 1, 3, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89
Offset: 1
Keywords
Examples
a(8) = 1 because 8 = 2^3 is not the power of an odd prime, a(49) = 7 because 49 = 7^2.
References
- Tom M. Apostol, Introduction to analytic number theory, Springer-Verlag, 1976.
Links
- Manjul Bhargava, The factorial function and generalizations, Amer. Math. Monthly, 107 (Nov. 2000), 783-799.
- Angelo B. Mingarelli, Abstract factorials, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 4, 43-76, (page 44).
- Wikipedia, Von Mangoldt function
Programs
-
Maple
a := proc(n) local lcm; lcm := n -> ilcm(seq(i,i = 1..n)); if type(n,even) then 1 else lcm(n)/lcm(n-1) fi end;
-
Mathematica
a[n_] := If[IntegerQ[Log[2, n]], 1, Exp[MangoldtLambda[n]]]; Table[a[n], {n, 1, 89}] (* Jean-François Alcover, Jan 27 2014 *)
Formula
a(n) = 1 + Sum_{k=3..n} (k-1)*A010051(k)*(floor(k^n/n)-floor((k^n -1)/n)). - Anthony Browne, Jun 16 2016
Comments