cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155457 a(n) = exp(Lambda(n)), where Lambda(n) is the von Mangoldt function for odd (!) primes.

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 7, 1, 3, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89
Offset: 1

Views

Author

Peter Luschny, Jan 22 2009, Jan 25 2009

Keywords

Comments

a(n) = p if n = p^k and p odd prime, k >= 1, otherwise 1.

Examples

			a(8) = 1 because 8 = 2^3 is not the power of an odd prime, a(49) = 7 because 49 = 7^2.
		

References

  • Tom M. Apostol, Introduction to analytic number theory, Springer-Verlag, 1976.

Crossrefs

Programs

  • Maple
    a := proc(n) local lcm; lcm := n -> ilcm(seq(i,i = 1..n)); if type(n,even) then 1 else lcm(n)/lcm(n-1) fi end;
  • Mathematica
    a[n_] := If[IntegerQ[Log[2, n]], 1, Exp[MangoldtLambda[n]]]; Table[a[n], {n, 1, 89}] (* Jean-François Alcover, Jan 27 2014 *)

Formula

a(n) = 1 + Sum_{k=3..n} (k-1)*A010051(k)*(floor(k^n/n)-floor((k^n -1)/n)). - Anthony Browne, Jun 16 2016