This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A155465 #18 Sep 08 2022 08:45:40 %S A155465 7,88,555,3276,19135,111568,650307,3790308,22091575,128759176, %T A155465 750463515,4374021948,25493668207,148587987328,866034255795, %U A155465 5047617547476,29419671029095,171470408627128,999402780733707,5824946275775148 %N A155465 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 7, a(1) = 88, a(2) = 555. %C A155465 lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2). %H A155465 G. C. Greubel, <a href="/A155465/b155465.txt">Table of n, a(n) for n = 0..1000</a> %H A155465 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-7,1). %F A155465 a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 7, a(1) = 88. %F A155465 a(n) = ((31+25*sqrt(2))*(3+2*sqrt(2))^n + (31-25*sqrt(2))*(3-2*sqrt(2))^n - 34)/4. %F A155465 G.f.: (7+39*x-12*x^2)/((1-x)*(1-6*x+x^2)). %F A155465 a(n) = (3*A002203(2*n+3) + 10*A002203(2*n+1) - 34)/4. - _G. C. Greubel_, Aug 21 2018 %t A155465 LinearRecurrence[{7,-7,1},{7,88,555},30] (* _Harvey P. Dale_, Apr 29 2012 *) %t A155465 Table[(3*LucasL[2*n+3,2] + 10*LucasL[2*n+1,2] - 34)/4, {n, 0, 50}] (* _G. C. Greubel_, Aug 21 2018 *) %o A155465 (PARI) {m=20; v=concat([7, 88, 555], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v} %o A155465 (Magma) I:=[7,88,555]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..50]]; // _G. C. Greubel_, Aug 21 2018 %Y A155465 Second trisection of A118120. Cf. A001652. %Y A155465 Cf. A155464, A155466, A156035 (decimal expansion of 3+2*sqrt(2)). %K A155465 nonn,easy %O A155465 0,1 %A A155465 _Klaus Brockhaus_, Jan 30 2009 %E A155465 Comment and recursion formula added, cross-references edited by _Klaus Brockhaus_, Sep 23 2009