cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155468 Numbers that are sums of 8th powers of 2 distinct positive integers.

This page as a plain text file.
%I A155468 #13 Nov 05 2017 18:42:07
%S A155468 257,6562,6817,65537,65792,72097,390626,390881,397186,456161,1679617,
%T A155468 1679872,1686177,1745152,2070241,5764802,5765057,5771362,5830337,
%U A155468 6155426,7444417,16777217,16777472,16783777,16842752,17167841,18456832,22542017,43046722,43046977,43053282
%N A155468 Numbers that are sums of 8th powers of 2 distinct positive integers.
%H A155468 Chai Wah Wu, <a href="/A155468/b155468.txt">Table of n, a(n) for n = 1..10000</a>
%e A155468 1^8 + 2^8 = 257, 1^8 + 3^8 = 6562, 2^8 + 3^8 = 6817, ...
%t A155468 lst={};e=8;Do[Do[x=a^e;Do[y=b^e;If[x+y==n,Print[n,",",Date[]];AppendTo[lst,n]],{b,Floor[(n-x)^(1/e)],a+1,-1}],{a,Floor[n^(1/e)],1,-1}],{n,4*8!}];lst
%o A155468 (PARI) list(lim)=my(v=List(),t); lim\=1; for(m=2,sqrtnint(lim-1,8), t=m^8; for(n=1,min(sqrtnint(lim-t,8),m-1), listput(v,t+n^8))); Set(v) \\ _Charles R Greathouse IV_, Nov 05 2017
%Y A155468 Cf. A003380, A088719 (distinct 7th), A088677 (distinct 6th), A088703, A088687, A024670 (distinct 3rd), A004431 (distinct 2nd).
%K A155468 nonn
%O A155468 1,1
%A A155468 _Vladimir Joseph Stephan Orlovsky_, Jan 23 2009
%E A155468 8 more terms. - _R. J. Mathar_, Sep 07 2017
%E A155468 More terms from _Chai Wah Wu_, Nov 05 2017